From 1 - 10 / 46
  • This Northern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Northern Australian Fractured Rock Province is a hydrogeological entity defined for this study, building upon earlier national-scale hydrogeological research. Australia's geological development was predominantly from west to east, with Archean rocks in the west, Proterozoic rocks in central Australia, and Phanerozoic rocks in the east. The North Australian Craton (NAC) is a significant tectonic element underlying 80% of the Northern Territory and extending to parts of Western Australia and northern Queensland, making up the core of the Northern Australian Fractured Rock Province. The NAC primarily consists of Paleoproterozoic rocks overlying Neoarchean basement. It is surrounded by Proterozoic terranes, including the Musgrave, Warumpi, and Paterson orogens to the south and south-west, the Terra Australis Orogen in the east, and the Western Australian Craton in the west. The Northern Australian Fractured Rock Province includes approximately twelve geological regions of mostly Proterozoic age, such as the Kimberley Basin, Speewah Basin, and Tanami Orogen, among others. Additionally, the province is partially overlain by the Kalkarindji Province, characterized by volcanic rocks. This widespread basaltic province serves as the basement for several significant sedimentary basins in northern Australia, including the Wiso, Ord, Bonaparte, Daly, and Georgina basins. In summary, the Northern Australian Fractured Rock Province is a hydrogeological region defined by combining various Proterozoic geological regions, mainly situated within the North Australian Craton. It is bounded by other Proterozoic terranes and covered in part by the Kalkarindji Province, which consists of volcanic rocks and forms the basement for several key sedimentary basins in northern Australia. Understanding this province is crucial for evaluating the hydrogeological characteristics and geological history of the region.

  • This Canning Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Canning Basin, characterized by mostly Paleozoic sedimentary rocks with a maximum thickness of over 15,000 m, went through four major depositional phases from Early Ordovician to Early Cretaceous. The basin contains two main depocenters, the Fitzroy Trough-Gregory Sub-basin in the north and the Willara Sub-basin-Kidson Sub-basin in the south. The depositional history includes marine, evaporite, fluvial, deltaic, glacial, and non-marine environments. The basin's evolution began with extension and rapid subsidence in the Early Ordovician, followed by a sag stage with evaporite and playa conditions in the Late Ordovician and Silurian. The Devonian to Early Carboniferous phase involved marine, reef, fluvio-deltaic, and terrestrial sedimentation in the north and marginal marine to terrestrial systems in the south. The Late Carboniferous to mid-Triassic period saw non-marine and marine settings, including glacial environments. The basin then experienced mid-Jurassic to Early Cretaceous deposition, mainly in deltaic and non-marine environments. Throughout its history, the Canning Basin encountered multiple tectonic phases, including extension, compression, inversion, and wrench movements, leading to various depositional settings and sediment types. Around 250 petroleum wells have been drilled in the basin, with production mainly from Permo-Carboniferous sandstones and Devonian carbonates. Several proven and untested plays, such as draped bioherms, anticlinal closures, and fault blocks, provide potential for hydrocarbon exploration. Late Carboniferous and Jurassic mafic sills intersected in wells indicate additional geological complexity. Additionally, some areas of the Canning Basin are considered suitable for CO2 storage.

  • This Amadeus Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Amadeus Basin is a sedimentary basin in central Australia that spans from the Neoproterozoic to Late Devonian, potentially Early Carboniferous, periods. It contains clastic, carbonate, and evaporitic sedimentary rocks, with a total thickness of 6,000 m to 14,000 m. The Neoproterozoic section alone is up to 3,000 m thick and is divided into four super-sequences separated by major unconformities. The basin is an active hydrocarbon province, with ongoing oil and gas production and the potential for further discoveries. Several key petroleum source rock units have been identified in the Amadeus Basin. The Gillen Formation, found in the northeast, consists of marine black shale, dolostone, sandstone, and evaporite, reaching a maximum thickness of 850 m. The Loves Creek Formation comprises deep water grainstone and mudstone overlain by stromatolite-bearing grainstone and dolostone, with a thickness of up to 500 m. The Johnnys Creek Formation is a unit composed of red bed and dolomitic limestone or dolostone, along with siltstone and sandstone, up to 400 m thick. The Inindia beds consist of sandstone, siltstone, chert, jasper, tillite, and dolostone, with a maximum thickness of 2,000 m and were deposited in shallow marine conditions. The Aralka Formation is a siltstone and shale unit with two members, the Ringwood Member and the Limbla Member, reaching a thickness of up to 1,000 m. The Pertatataka Formation is a turbiditic red and green siltstone and shale unit, along with minor feldspathic sandstone, deposited in a deep marine or marine shelf environment, typically about 350 m thick but up to 1,400 m thick at certain locations. The Winnall Group is a succession of sandstone and siltstone, with a maximum thickness of 2,134 m. The Chandler Formation is a poorly exposed unit consisting of halite, foetid carbonate mudstone, shale, and siltstone, deposited in a shallow marine environment, with halite deposits reaching thicknesses of 230 m to 450 m. The Giles Creek Dolostone is a carbonate and siltstone unit, with minor sandstone, deposited in a shallow-marine environment. The Horn Valley Siltstone is a thinly bedded shale and siltstone, with nodular limestone and sandy phosphatic and glauconitic interbeds, serving as the primary hydrocarbon source rock in the basin. Lastly, the Stairway Sandstone is 544 m thick and divided into three subunits, consisting of quartzitic sandstone, black shale, siltstone, mudstone, and phosphorites.

  • This Maryborough-Nambour Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Maryborough Basin is a half-graben intracratonic sag basin mainly filled with Early Cretaceous rocks, overlain by up to 100 m of Cenozoic sediments. It adjoins the older Nambour Basin to the south, comprising Triassic to Jurassic rocks. The boundary between the basins has shifted due to changes in sedimentary unit classifications, with the Cretaceous units now restricted to the Maryborough Basin and Jurassic and older units assigned to the Nambour Basin. Both basins are bounded to the west and unconformably overlies older Permian and Triassic rocks in the Gympie Province and Wandilla Province of the New England Orogen. In the south of the Nambour Basin, it partly overlaps with the Triassic Ipswich Basin. The Nambour Basin in the south is primarily composed of the Nambour Formation, with interbedded conglomerate, sandstone, siltstone, shale, and minor coal. Overlying this is the Landsborough Sandstone, a unit with continental, fluviatile sediments and a thickness of up to 450 m. In the north, the Duckinwilla Group contains the Myrtle Creek Sandstone and the Tiaro Coal Measures, which were formerly considered part of the Maryborough Basin but are now associated with the northern Nambour Basin. In contrast, the Maryborough Basin consists of three main Cretaceous units and an upper Cenozoic unit. The Grahams Creek Formation is the deepest, featuring terrestrial volcanic rocks, volcaniclastic sedimentary rocks, and minor pyroclastic rocks. The overlying Maryborough Formation was deposited in a continental environment with subsequent marine incursion and includes mudstone, siltstone, minor sandstone, limestone, conglomerate, and tuff. The upper Cretaceous unit is the Burrum Coal Measures, comprising interbedded sedimentary rocks deposited in fluvial to deltaic environments. The uppermost unit, the Eocene to Miocene Elliott Formation, includes sandstone, siltstone, conglomerate, and shale deposited in fluvial to deltaic environments. Cenozoic sediments overlying the Elliott Formation consist of Quaternary alluvium, coastal deposits, and sand islands like Fraser Island, influenced by eustatic sea level variations. Volcanic deposits and freshwater sediments also occur in some areas. Adjacent basins, such as the Clarence-Moreton Basin and Capricorn Basin, have stratigraphic correlations with the Maryborough Basin. The Oxley Basin lies to the south, overlying the Ipswich Basin. In summary, the Maryborough Basin and the older Nambour Basin exhibit distinct geological characteristics, with varying rock formations, ages, and sedimentary features, contributing to the diverse landscape of the region.

  • This Lake Eyre Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Lake Eyre Basin (LEB) is a vast endorheic basin covering approximately 15% of the Australian continent, spanning about 1.14 million square kilometres. Its development began during the Late Palaeocene due to tectonic subsidence in north-eastern South Australia, resulting in a wide and shallow intra-cratonic basin divided into Tirari and Callabonna Sub-basins by the Birdsville Track Ridge. The depocenter of the LEB has shifted southwards over time. During the Cenozoic era, sediment accumulation was highest near the Queensland-Northern Territory border. The depo-center was in the southern Simpson Desert by the late Neogene, and is currently in Kati Thanda-Lake Eyre, leading to the deposition of various sedimentary formations, which provide a record of climatic and environmental changes from a wetter environment in the Palaeogene to the arid conditions of the present. The LEB is characterized by Cenozoic sediments, including sand dunes and plains in the Simpson, Strezelecki, Tirari, and Strezelecki deserts, mud-rich floodplains of rivers like Cooper, Diamantina, and Georgina, and extensive alluvial deposits in the Bulloo River catchment. The basin's geology comprises rocks from different geological provinces, ranging from Archean Gawler Craton to the Cenozoic Lake Eyre Basin. The Callabonna Sub-basin, confined by the Flinders Ranges to the west, contains formations such as the Eyre and Namba formations, representing fluvial and lacustrine environments. The Cooper Creek Palaeovalley hosts formations like the Glendower, Whitula, Doonbara, and Caldega, and features significant Quaternary sedimentary fill. The Tirari Sub-basin, located on the border regions of three states, contains formations like the Eyre, Etadunna, Mirackina, Mount Sarah Sandstone, Yardinna Claystone, Alberga Limestone, and Simpson Sand. The northwest of Queensland includes smaller Cenozoic basins, likely infilled ancient valleys or remnants of larger basins. The Marion-Noranside Basin has the Marion Formation (fluvial) and Noranside Limestone (lacustrine), while the Austral Downs Basin comprises the Austral Downs Limestone (spring and lacustrine). The Springvale and Old Cork Basins tentatively have Eocene and Miocene ages. Cenozoic palaeovalleys in the Northern Territory are filled with fluvial sands, gravels, lignites, and carbonaceous deposits and are confined by surrounding basins. Overall, the sedimentary sequences in the Lake Eyre Basin provide valuable insights into its geological history, climate shifts, and topographic changes, contributing to our understanding of the region's development over time.

  • This Carnarvon Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carnarvon Basin is a large sedimentary basin covering the western and north-western coast of Western Australia, stretching over 1,000 km from Geraldton to Karratha. It is predominantly offshore, with over 80% of the basin located in water depths of up to 4,500 m. The basin is elongated north to south and connects to the Perth Basin in the south and the offshore Canning Basin in the north-east. It is underlain by Precambrian crystalline basement rocks. The Carnarvon Basin consists of two distinct parts. The southern portion comprises onshore sub-basins with mainly Paleozoic sedimentary rocks extending up to 300 km inland, while the northern section consists of offshore sub-basins containing Mesozoic, Cenozoic, and Paleozoic sequences. The geological evolution of the Southern Carnarvon Basin was shaped by multiple extensional episodes related to the breakup of Gondwana and reactivation of Archean and Proterozoic structures. The collision between Australia and Eurasia in the Mid-Miocene caused significant fault reactivation and inversion. The onshore region experienced arid conditions, leading to the formation of calcrete, followed by alluvial and eolian deposition and continued calcareous deposition offshore. The Northern Carnarvon Basin contains up to 15,000 m of sedimentary infill, primarily composed of siliciclastic deltaic to marine sediments from the Triassic to Early Cretaceous and shelf carbonates from the Mid-Cretaceous to Cenozoic. The basin is a significant hydrocarbon province, with most of the resources found within Upper Triassic, Jurassic, and Lower Cretaceous sandstone reservoirs. The basin's development occurred during four successive periods of extension and thermal subsidence, resulting in the formation of various sub-basins and structural highs. Overall, the Carnarvon Basin is a geologically complex region with a rich sedimentary history and significant hydrocarbon resources. Exploration drilling has been ongoing since 1953, with numerous wells drilled to unlock its hydrocarbon potential.

  • This Eromanga Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eromanga Basin, part of the Great Artesian Basin (GAB) in Australia, is an extensive Mesozoic sedimentary basin filled with a mix of non-marine and marine rocks. The GAB covers about 22% of the Australian land surface, including areas in Queensland, New South Wales, South Australia, and the Northern Territory. The Eromanga Basin is the largest among the basins that form the GAB. Spanning over 1,250,000 square kilometres in central and eastern Australia, the Eromanga Basin contains rocks ranging from Jurassic to Cretaceous in age. The sedimentary deposits consist of three main basin successions: Early Jurassic to Early Cretaceous fluvial and lacustrine, Early to mid-Cretaceous marine, and Late Cretaceous fluvial-lacustrine successions. The basin's stratigraphic architecture results from a complex interplay between subsidence-controlled accommodation, sediment supply rates, and changing sediment provenance. These controls were influenced by various factors, such as intra-plate stress fields, eustatic sea-level fluctuations, and dynamic mantle-driven topography during the breakup of the Gondwana supercontinent. During the Jurassic and Early Cretaceous, regional uplift of the Australian continent led to an influx of fluvial sand-rich sediments in the western Eromanga Basin. Subsequent rapid subsidence and global high sea levels during the Early Cretaceous allowed marine sediments to spread across much of Australia, including the Eromanga Basin. The basin later returned to non-marine sedimentation during the Late Cretaceous with deposition of the Winton Formation, followed by closure due to an east-directed Late Cretaceous compressional event. This rapid deposition of the Late Cretaceous Winton Formation played a crucial role in generating and expelling hydrocarbons from various source intervals. The movement of the Australian continent significantly impacted the basin, causing most tectonic activity to occur on the southern side of a prominent keel near Innamincka in the southern half of the GAB. Additionally, variations in the mechanical properties of the sub-lithospheric mantle affected stress distribution, leading to changes in surface elevation and the expression of discharge from aquifers, potentially influencing the location and pattern of spring sites within the South Australian part of the GAB.

  • This Ord Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Ord Basin, an intracratonic sedimentary basin, covers about 8000 square kilometres on the border of Western Australia and the Northern Territory. It was once part of the extensive Centralian Superbasin, which deposited sediments across central and northern Australia from the Proterozoic to early Palaeozoic era. The Ord Basin comprises three synclines with up to 2500 m of Cambrian and Devonian sedimentary rocks, separated by major faults and Proterozoic basement highs. The basin's northern boundary is defined by the Halls Rewards Fault and Proterozoic basement rocks, separating it from the Bonaparte Basin. The western edge overlies rocks of the Paleoproterozoic Halls Creek Orogen, while the eastern margin is separated from the Wiso Basin by volcanic Kalkarindji Province and Proterozoic Birrindudu and Victoria basins. The southern boundary is formed by the Negri Fault and Proterozoic basement highs. The depositional history of the Ord Basin can be divided into three phases. The early Cambrian witnessed extensive basaltic volcanism, forming the Antrim Plateau Volcanics. Subsequently, the Cambrian marine transgression deposited carbonates and clastic rocks of the Goose Hole Group, including the Elder and Negri Subgroups. The Late Devonian saw the deposition of continental sandstones and conglomerates of the Mahony Group. Throughout the basin's evolution, tectonic movements and erosional processes shaped its present configuration. The Alice Springs Orogeny (450 to 300 Ma) caused deformation and landscape changes, resulting in the deposition of the Mahony Group. Periodic reactivation of growth faults in the underlying Birrindudu Basin and subsequent erosion contributed to the basin's current structure. The Ord Basin's three synclines are the Hardman Syncline (southern and largest), the Rosewood Syncline (central), and the Argyle Syncline (northern). The Hardman Syncline holds the full succession of basin strata.

  • A compilation of thematic summaries of 42 Australian Groundwater Provinces. These consistently compiled 42 summaries comprise the National Hydrogeological Inventory. The layer provides the polygons for each groundwater province in the inventory and thematic information for each province, including location and administration information, demographics, physical geography, surface water, geology, hydrogeology, groundwater, groundwater management and use, environment, land use and industry types and scientific stimulus.

  • This Tasmania Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Late Carboniferous to Late Triassic Tasmania Basin covers approximately 30,000 square kilometres of onshore Tasmania. The basin contains up to 1500 m of mostly flat-lying sedimentary rocks, and these are divided into two distinct lithostratigraphic units, the Lower and the Upper Parmeener Supergroup. The Lower Parmeener Supergroup comprises Late Carboniferous to Permian rocks that mainly formed in marine environments. The most common rock types in this unit are mudstone, siltstone and sandstone, with less common limestone, conglomerate, coal, oil shale and tillite. The Upper Parmeener Supergroup consists predominantly of non-marine rocks, typically formed in fluvial and lacustrine environments. Common rock types include sandstone, siltstone, mudstone and minor basalt layers. Post-deposition the rocks of the Parmeener Supergroup experienced several major geological events, including the widespread intrusion of tholeiitic dolerite magma during the Middle Jurassic.