From 1 - 10 / 26
  • The Archean alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Archean age. All are from the Pilbara and Yilgarn Cratons of Western Australia.

  • The Archean alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Archean age. All are from the Pilbara and Yilgarn Cratons of Western Australia.

  • The Mesozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Mesozoic age.

  • The Cenozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Cenozoic age.

  • The Proterozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Proterozoic age.

  • The Paleozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Paleozoic age.

  • The Paleozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Paleozoic age.

  • The Mesozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Mesozoic age.

  • Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement. Accordingly, although Alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation. This GIS product is part of an ongoing compilation of the distribution and geology of alkaline and related rocks throughout Australia. The accompanying report document alkaline and related rocks of Mesozoic age.

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Proterozoic age. Proterozoic alkaline and related rocks are primarily restricted to the western two-thirds of the Australia continent, congruent with the distribution of Proterozoic rocks more generally. Proterozoic alkaline rock units are most abundant in Western Australia and the Northern Territory, with minor occurrences in South Australia, and the western regions of Queensland, New South Wales and Tasmania.</div><div><br></div><div>The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g., extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.&nbsp;</div>