From 1 - 10 / 200
  • Extended abstract version of short abstract accepted for conference presentation GEOCAT# 73701

  • The first RSTT model for Australia has been developed based on the Australian Seismological Reference Model (AuSREM) that was released in late 2012. The densely-gridded P and S wave distributions of the crust and upper mantle of AuSREM have been simplified and translated into the 7 layer crustal and upper mantle RSTT model. Travel times computed with this RSTT model are evaluated against travel times computed in full 3D through the AuSREM model to assess the impact of the approximations used by RSTT. Location estimates of 5 ground truth earthquakes (GT1, GT2 and GT5) using the global ak135 reference model, the RSTT model and the full 3D travel times are compared. It is found that the RSTT model can reproduce the 3D travel times fairly accurately within its distance of applicability, thereby improving location estimates compared to using a global travel time model like ak135. However the benefit of using RSTT for locating Australian earthquakes is far less than using full 3D travel times, mainly because most stations tend to be further away from the source than the distance of RSTT applicability.

  • Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.

  • The Capel and Faust basins are located in a frontier part of offshore eastern Australia, about 800 km east of Brisbane in 1300-2500 m of water. Little is known of the basin structures and geological history of this area, which is a continental fragment separated from Australia during the Cretaceous rifting of the Tasman Sea. In 2007 Geoscience Australia acquired 6000km of 2D seismic reflection and refraction data, gravity and magnetics, to begin an assessment of the petroleum prospectivity of these basins. A workflow has been developed to assist the seismic interpreter with feedback from a coherent 3D geology model that is used to predict the gravity response of the basins. This response is harmonized with the observed gravity and modified geological horizons are then returned to the seismic interpreter. An interface between Geoframe and Geomodeller has been optimized to make it very easy to do many iterations of this process, as suits the changing needs of the interpretation team.

  • Receiver function studies of Northern Sumatra T. Volti and A. Gorbatov Geoscience Australia, GPO Box 378 Canberra ACT 2601 Australia The Northern Sumatra subduction zone is distinguished by the occurrence of the 2004 Sumatra-Andaman megathrust earthquake and has a peculiar subduction of two major bathymetric structures; the Investigator fracture zone and the Wharton fossil ridge. Four stations in Northern Sumatra (BSI, PSI, PPI, GSI) and two stations in Malaysia (KUM and KOM) have been selected to construct migrated images based on receiver functions (RF) in order to study Earth structure and subduction processes in the region. Waveforms from 304 teleseismic earthquakes with Mb >5.5 and a distance range of 30º to 95º recorded from April 2006 to December 2008 were used for the analysis. The number of RF for each station varies from 20 to 192 depending on the signal/noise ratio. The computed RF clearly show pS conversions at major seismic velocity discontinuities associated with the subduction process where the Moho is visible at 5.5, 4, 3.5, and 2 sec for BSI, PSI, PPI, and GSI, respectively. RF for KUM and KOM have only conversions at the Moho near ~4 sec. The subducted slab is visible below Sumatra as a positive amplitude conversion preceded by a negative one, which we interpret as a low-velocity structure above the subducted slab. RF for PSI located at Toba supervolcano reveal pockets of low-velocity zones extending from a ~50 km depth down to the subducted slab. Forward modellings of RF suggest that seismic velocity contrasts can reach ~18% that is in accordance with previous local tomographic studies.

  • Abstract. Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and sub-tropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2002) where the wind hazard is dominated by synoptic and thunderstorm gust winds.

  • Three seismic lines (10GA-CP1, 10GA-CP2 and 10GA-CP3), which cross north to south across the Capricorn Orogen of Western Australia, have recently been collected by Geoscience Australia, ANSIR and the Geological Survey of Western Australia. The interpretation of these seismic lines is aimed at providing insight into the geologic structure of the Capricorn Orogen and to explore the relationship between the Pilbara and Yilgarn cratons. To aid in further interpretation and to add value to the seismic data an analysis of the available potential field data (gravity and magnetics) has also been undertaken. A range of geophysical data analysis techniques have been applied and include: multi-scale edge detection (worms), forward modelling and 3D inversion. By applying all three analysis techniques to the potential-field data major trends, contrasting properties and regional blocks relating to the subsurface geology have been determined, in turn, allowing for a detailed comparison with the seismic interpretation. Note that all results referred to in this abstract are preliminary and subject to change.

  • The Paterson AEM survey was flown over the Paterson Orogen, the eastern Pilbara Craton and the on-lapping Officer and Canning Basins in NW Western Australia between September 2007 and October 2008 as part of the Commonwealth Government's Onshore Energy Security Program. The survey was designed to provide pre-competitive data for enhancing uranium and other mineral exploration. Flight lines were at a variety of spacings from 6, 2 and 1 km to 200 m targeting known deposits and other covered highly prospective rocks for a total area of 45,330 km2. The survey data has afforded new insights into the Paleozoic paleotopography of the region which is blanketed by regolith including Phanerozoic sediments including Permian glaciogene, Mesozoic and Cenozoic sediments. These insights have major implications for mineral prospectivity.

  • 3D visualisation of the Mount Isa Crustal Seismic Survey