Authors / CoAuthors
Williams, N.C. | Lyons, P. | Lane, R.J.L. | Peljo, M.
Abstract
Knowledge of the spatial and temporal relationships between fluid flow, the generation of structures, and crustal architecture is essential to understanding a mineral system. In regions dominated by cover, such knowledge leans heavily on interpretation of potential field data. Forward modelling and inversion of cross-sections, based on solid geology maps, provide better than a first approximation but reliability decreases with extrapolation from the sections. Stereo-models of crustal architecture are possible using closely spaced sections but they are more rigorously produced by 3D inversion. Inversion programs derive a physical property distribution that reproduces potential field observations in a manner consistent with a series of model parameters and geological constraints. The inversion techniques used in this study are based on the smooth-model potential field inversion software, MAG3D and GRAV3D, developed at the University of British Columbia?Geophysical Inversion Facility (UBC?GIF). We tuned some of the parameters and modified the methods for use in regional-scale rather than deposit-scale inversions. The volume of crust chosen for study, centred on the Olympic Dam deposit, is 150 kmx ? 150 kmy ? 10 kmz. Because a buffer is required to minimise edge effects, we model a volume of 198 kmx ? 198 kmy ? 18 kmz, discretised into 1 kmx ? 1 kmy ? 0.5 kmz cells. A series of trial inversions were run on a desktop PC with an Intel? Pentium? 4 2.0 GHz processor and 2 GB of RAM. The initial trials were designed to investigate the feasibility of doing regional-scale inversions and to show where development of methods and software support were needed. For tractable computation, it is necessary to split each volume into a number of overlapping tiles that can be processed independently then rejoined. Even so, runs took up to 40 hours. The time elapsed can be substantially reduced if processing is performed as a distributed application across a network with each PC dedicated to a single tile. The inherent non uniqueness of potential field inversion means that, even after some models have been rejected on `geo-logical? grounds, a number of reasonable models will remain. Tests that prove or disprove the models may be devised but actual physical testing may not be practical. However, we can make, probabilistic determinations of the distribution of Fe oxide alteration, which may be used to map likely fluid pathways and as guides to ore. Such predictions are amenable to testing available in exploration programs.
Product Type
nonGeographicDataset
eCat Id
60367
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationConference Paper
- ( Theme )
-
- geophysics
- ( Theme )
-
- mineral exploration
- ( Theme )
-
- mineral deposits
-
- AU-SA
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2004-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-32.0, -30.0, 136.0, 138.0]
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.