tectonic history
Type of resources
Keywords
Publication year
Topics
-
We present a seismic reflection section acquired across the western margin of the Lake George Basin near Geary's Gap which images the stratigraphy of the basin sediments and the interaction between faults and these sediments. When coupled with high resolution topographic data, key aspects of the evolution of the Lake George Basin may be deduced. The Lake George Basin formed as the result of west-dipping reverse faulting and associated fault propagation folding at the eastern margin of the Lake George Range in the interval between ca. 3.93 Ma and the present. Assuming that elevated gravels in Geary's Gap and to the west along Brooks Creek are correlative with similar lithology at the base of the basin (as suggested by previous workers), vertical displacement in the order of 250 m has occurred in this time interval. This is one of the larger rates of displacement recorded for an Australian intraplate fault, averaged over a timescale of several million years. Three prominent angular unconformities, separating packages of approximately parallel strata, indicate that deformation was episodic, with up to 1 million years separating active periods on the fault. The ~75 km active length of the Lake George Fault is consistent with a MW7.4 characteristic earthquake. An event of this magnitude has the potential to cause significant damage to the Australian Capital Territory, given that the surface trace of the fault approaches to within 25 km of Parliament House. Assuming periodic recurrence, a characteristic event might be expected every ~3040 kyr. However, the evidence for temporal clustering suggests that such events might be much more tightly spaced in time (perhaps by an order of magnitude) in an active period on the fault. This neotectonic activity is allied to the Late Pliocene to Pleistocene `Kosciuszko Uplift, which may be responsible for adding several hundred metres of relief to the Eastern Highlands of Australia. Few crustal fault systems which might have accommodated such large-scale uplift have yet been characterised. Consequently, the seismic hazard of the Eastern Highlands, which is based largely upon the short historic record of seismicity, is likely to be underestimated. Nearby candidate faults for similar activity include the Queanbeyan, Murrumbidgee, Shoalhaven, Crookwell, Mulwaree, Binda, Tawonga, Khancoban-Yellow Bog and Jindabyne faults.
-
Palaeogeographic reconstructions of the Australian and Antarctic margins based on matching basement structures are commonly difficult to reconcile with those derived from ocean floor magnetic anomalies and plate vectors. Following identification of a previously unmapped crustal-scale structure in the southern part of the Delamerian Orogen (Coorong Shear Zone), a revised plate reconstruction for these margins is proposed. This reconstruction positions the Coorong Shear Zone opposite the Mertz Shear Zone and indicates that structural inheritance had a profound influence on the location and geometry of continental breakup, and ocean fracture development. Previously, the Mertz Shear Zone has been correlated with the Proterozoic Kalinjala Mylonite Zone in the Gawler craton but this means that Australia is positioned 300-400 km too far east relative to Antarctica prior to breakup. Differences in the orientation of late Jurassic-Cretaceous basin-bounding normal faults in the Bight and Otway basins further suggest that extensional strain during basin formation was partitioned across the Coorong Shear Zone following an earlier episode of strike-slip faulting on a northwest-striking continental transform fault (Trans-Antarctic Shear).
-
Numerous disparate and, in many cases, mutually inconsistent models for the Proterozoic amalgamation and evolution of the Australian continent have been published over the past ~15 years. Most of the models involve large-scale relative movements between pre-existing cratonic blocks, as well as accretion of relatively juvenile crust to cratonic margins, via modern style subduction-tectonics. As such, improved geological understanding of the margins of the major constituent cratonic blocks is critical to testing between contrasting evolutionary models. Both the northern and eastern margins of the Gawler Craton, South Australia, are characterised by shear zones with strike lengths of several hundred kilometres; the Karari Shear Zone in the north, and the Kalinjala Shear Zone in the east. Each of these structures preserves evidence for very significant strike-slip motion, but also juxtaposes rocks from different crustal levels indicating significant dip-slip motion. Recently-acquired deep seismic transects across each of these cratonic margins, together with new U-Pb and 40Ar/39Ar geochronology are interpreted to indicate that the Karari Shear Zone was likely active in at least three episodes through the Paleo- and Mesoproterozoic, and currently preserves an overall north-dipping thrust geometry that dates from the early Mesoproterozoic (~1580 - 1450 Ma). In contrast, on the eastern margin of the craton, the northern part of the Kalinjala Shear Zone preserves an east-dipping bulk extensional geometry that dates from the Paleoproterozoic (~1800 - 1740 Ma). The temporal evolution of the margins of the Gawler Craton provides constraints on models invoking tectonic interaction with other parts of Proterozoic Australia.
-
Detrital zircon age patterns are reported for sandstones from the mid-Permian-Triassic part of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand and from the early Permian Nambucca Block of the New England Orogen, eastern Australia. In Otago, the Triassic Torlesse samples have a major (64%) age group of Permian-Early Triassic components ca. 240, 255 and 280 Ma, and a minor age group (30%) with a Precambrian-early Paleozoic range (ca. 500, 600 and 1000 Ma). In Permian sandstones nearby, the younger group is diminished (30%), and the older group also contains a major (50%) and unusual, Carboniferous group (components at ca. 330-350 Ma). This trend is similar in sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, in which Permian zircons are now minor (<20%), and the age patterns are also dominated (40%) by similar Carboniferous age components, ca. 320-350 Ma.
-
A deep seismic reflection and magnetotelluric survey, conducted in 2007, established the architecture and geodynamic framework of north Queensland, Australia. Results based on the interpretation of the deep seismic data include the discovery of a major, west-dipping, Paleoproterozoic (or older) crustal boundary, interpreted the Gidyea Suture Zone, separating relatively nonreflective, thick crust of the Mount Isa Province from thinner, two layered crust to the east. East of the Mount Isa Province, the lower crust is highly reflective and is subdivided into three mappable seismic provinces (Numil, Abingdon and Agwamin) which are not exposed at the surface. To the west of Croydon, a second major crustal boundary also dips west or southwest, offsetting the Moho and extending below it. It is interpreted as the Rowe Fossil Subduction Zone. This marks the boundary between the Numil and Abingdon seismic provinces, and is overlain by the Etheridge Province. The previously unknown Millungera Basin was imaged below the Eromanga-Carpentaria basin system. In the east, the Greenvale and Charters Towers Provinces, part of the Thomson Orogen, have been mapped on the surface as two discrete provinces, but the seismic interpretation raises the possibility that these two provinces are continuous in the subsurface, and also extend northwards to beneath the Hodgkinson Province, originally forming part of an extensive Neoproterozoic-Cambrian passive margin. Continuation of this passive margin at depth beneath the Hodgkinson and Broken River Provinces suggests that these provinces (which formed in an oceanic environment, possibly as an accretionary wedge at a convergent margin) have been thrust westwards onto the older continental passive margin. The Tasman Line, originally defined to represent the eastern limit of Precambrian rocks in Australia, has a complicated geometry in three dimensions, which is related to regional deformational events during the Paleozoic.
-
This database contains information on faults, folds and other features within Australia that are believed to relate to large earthquakes during the Neotectonic Era (i.e. the past 5-10 million years). The neotectonic feature mapping tool allows you to: * search and explore Australian neotectonic features * create a report for a feature of interest * download feature data and geometries as a csv file or kml file * advise Geoscience Australia if you have any feedback, or wish to propose a new feature.
-
The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.
-
Introduction: As part of the Offshore Energy Security Program (2007-2011), Geoscience Australia (GA) undertook an integrated regional study of the deepwater Otway and Sorell basins to improve the understanding of the geology and petroleum prospectivity of the region. The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediment. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. Structural framework: Using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data were used to develop new interpretations of basement structure and basin architecture. This analysis has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, controlled the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. ...
-
A short article describing the outcomes of the Tasman Frontier Petroleum Industry Workshop held at Geoscience Australia on 8 and 9 March 2012.
-
Australian Governments over the past decade have acquired thousands of kilometres of high-quality deep-seismic reflection data. The deep-seismic reflection method is unique among imaging techniques in giving textural information as well as a cross sectional view of the overall crust, including the character of the middle crust, lower crust, Moho, and any upper mantle features. Seismic reflection data can be readily integrated with other geophysical and geological data to provide an unsurpassed understanding of a region's geological history as well as the mineral and energy resource potential. Continental Australia is made up of four main elements (blocks), separated by orogens. Most boundaries between the elements are deeply rooted in the lithosphere, and formed during amalgamation of Australia. Major boundaries within the elements attest to their individual amalgamation, mostly prior to the final construction of the continent. Many of Australia's mineral and energy resources are linked to these deep boundaries, with modern seismic reflection providing excellent images of the boundaries. All of the seismic surveys have provided new geological insights. These insights have significantly advanced the understanding of Australian tectonics. Examples include: preservation of extensional architecture in an otherwise highly shortened terrane (Arunta, Yilgarn, Mt Isa and Tanami), unknown deep structures associated with giant mineral deposits (Olympic Dam, Yilgarn, Gawler-Curnamona), as well as the discovery of unknown basins, sutures and possible subduction zones (Arunta, North Queensland, Gawler-Curnamona). These new insights provide not only an improved tectonic understanding, but also new concepts and target areas for mineral and energy resources.