Trusted environmental and geological information
Type of resources
Keywords
Publication year
Topics
-
Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Galilee Basin. The unconventional hydrocarbon assessment for the Galilee Basin includes tight gas, shale resources (shale oil and gas) and coal seam gas (CSG) for 5 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) along with the scientific literature to inform the components required for unconventional hydrocarbons to be present. One hundred and sixty-three boreholes in the Galilee Basin were assessed, with data used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide outlines the play-based workflow for assessing unconventional hydrocarbon resource prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data were merged and spatially multiplied to show the relative assessment of unconventional hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the CSG prospectivity of the Betts CreekRewan Play interval.
-
The potential for hydrogen production in the Galilee Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) of gas with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential of carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Nine aquifers from the Galilee and overlying Eromanga and the Lake Eyre basins are included in the assessment. The Galilee Basin region has low renewable hydrogen potential except for small areas in the north, south and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Galilee Basin contains modest contingent gas resources, while sizeable gas reserves and contingent resources were identified in the overlying Eromanga Basin (Geoscience Australia, 2022). The geological CO2 storage assessment suggests that the Betts Creek - Rewan Play interval is the most prospective for CCS, with the highest potential around the central basin region. Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.
-
Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify conventional hydrocarbon resource (oil and gas) opportunities. The data guide is designed to support the data package that provide insights on conventional hydrocarbon resources in the Galilee Basin. The conventional hydrocarbon assessment for the Galilee Basin includes oil and gas resources for 5 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 5 components required for conventional hydrocarbons to be present. One hundred and sixty-three boreholes in the Galilee Basin were assessed with data used to map out gross depositional environments and their geological properties relevant for conventional hydrocarbon assessments. From these datasets, the following properties were evaluated and mapped across the basin: reservoir presence, reservoir effectiveness, top seal, trap and charge. The data are compiled at a point in time to inform decisions on resource development activities. The guide outlines the play-based workflow for assessing conventional hydrocarbon resource prospectivity. Each of the elements required for a working unconventional hydrocarbon system is explained and mapped. These data are integrated and merged to show the relative assessment of hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the conventional hydrocarbon prospectivity of the Jericho Play interval.
-
Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Cooper Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Cooper Basin region are outlined in the associated metadata files. These are described in groundwater conceptualisation models (Gouramanis et al., 2023). The Eromanga Basin overlying the Cooper Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie-Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.
-
Across Australia, groundwater is a vital resource that supports and strengthens communities, culture, the environment and numerous industries. Movement of groundwater is complicated, taking place horizontally, vertically and across different timescales from weeks to millions of years. It is affected by changes in climate, human use and geological complexities such as the type, geometry and distribution of rocks. Understanding how all these factors interact is known as a groundwater conceptual model and it is an important first step. This groundwater conceptualisation includes the Adavale Basin and the overlying Galilee Basin. Conceptualisation of the Galilee, Eromanga and Lake Eyre basins can be found in Hostetler et al. (2023). In the Adavale Basin this includes 1 aquifer in the Lake Eyre Basin, 5 aquifers in the Eromanga Basin, 3 aquifers in the Galilee Basin and 1 aquifer in the Adavale Basin (Wainman et al., 2023a, b). Confidence for each aquifer was calculated for both salinity and water levels (Gouramanis et al., 2023a, b, c, d). The confidence for each aquifer was added to show the overall confidence for the basin. The level of knowledge across all aquifers are moderate to low. The groundwater conceptualisations summarises the groundwater flow and potential connectivity between aquifers. Figures in this fact sheet show the distribution of the aquifers and aquitards, average salinity, potential aquifer yield and confidence over an area of 50 km along the cross section lines.
-
Publicly available geological data in the Adavale Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains an assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. Geochemical analysis of gas samples from petroleum boreholes in the basin shows various concentrations of natural hydrogen. However, the generation mechanism of the observed natural hydrogen concentration is still unknown. The Adavale Basin also has the potential for underground hydrogen storage in the Boree Salt. Given the depth of the Boree Salt (wells have intersected the salt at depths below 1800 m) and the high fluid pressure gradient in the basin, the construction of underground salt caverns should include consideration of stability and volume shrinkage. Mineral occurrences are all found in the basins overlying the Adavale region. However, they are small (thousands of tonnes range) and not currently of economic interest. The Adavale Basin has potential for base and precious metal deposits due to suitable formation conditions, but the depth of the basin makes exploration and mining difficult and expensive. There are no identified occurrences or resources of coal in the Adavale Basin. Given the depth of the basin, extraction of any identified coal would probably be uneconomic, with the potential exception of coal seam gas extraction. An assessment of CO2 geological storage also shows prospective storage areas in the Eromanga Basin within the Adavale Basin region in the Namur-Murta and Adori-Westbourne play intervals.
-
Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Cooper Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Cooper Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for the Cooper Basin aquifer are outlined in the associated metadata files. These are described in groundwater conceptualisation models (Gouramanis et al., 2023). The Cooper Basin includes one broadly defined aquifer named the Nappamerri Group aquifer. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.
-
Publicly available geology data are compiled to provide a common information base for resource development, environmental and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used and supports the data package that provides the existing knowledge of the key geological intervals of the Adavale Basin and the overlying Galilee, Eromanga and Lake Eyre basins. The key geological intervals identified by the Trusted Environmental and Geological Information (TEGI) Program for resource assessment and groundwater system characterisation are termed play intervals and hydrostratigraphic intervals respectively. The Adavale Basin includes 8 plays, which are consolidated into 1 hydrostratigraphic interval. Overlying the Adavale Basin are 5 play intervals of the Galilee Basin, which are consolidated into 3 hydrostratigraphic intervals; 9 play intervals of the Eromanga Basin, which are consolidated into 7 hydrostratigraphic intervals; and 1 Cenozoic play interval and 1 hydrostratigraphic interval for the Lake Eyre and other Cenozoic basins. The geological groups and formations included in the plays and hydrostratigraphic intervals are summarised in the stratigraphic charts of Wainman et al. (2023a). Gross depositional, depth structure and thickness maps are provided with 3D model and cross-sections summarising the geology of the Adavale Basin and the overlying basins. The mapped depths and thicknesses of the key intervals are used to inform resource assessments and provide the framework for assigning groundwater data to hydrostratigraphic intervals.
-
Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Eromanga Basin. The unconventional hydrocarbon assessment for the Eromanga Basin includes shale resources (shale oil and gas) and coal seam gas for 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, 2023b). Tight gas was not assessed due to play intervals lying above the zone of significant overpressure zone (2,800 m below ground level) in the Cooper-Eromanga region. The assessment captures data from well completion reports and government data sources to inform the components required for unconventional hydrocarbons to be present in the Eromanga Basin. The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), the Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021) and Draper 2002. These datasets were used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide will outline the play-based workflow for assessing unconventional hydrocarbon prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data are integrated and merged to show the relative assessment of unconventional prospectivity across the basin, at both play interval and basin scale. As an example of assessments contained within the dataset, this data guide showcases the prospectivity of shale resources in the Birkhead Play interval.
-
Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Adavale Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Adavale Basin region based on trusted information sources. It provides important contextual information on the Adavale Basin and where additional details on discovered resources can be found. So far, mineral deposits have not been found in the Adavale Basin. There are no coal deposits found in the basin itself, but 6 large coal deposits exist in the overlying basins in the Adavale Basin region. Historically, some small conventional gas resources have been found in the basin. Currently, there are no commercial reserves or available resources identified in the Adavale Basin itself. There are no active or planned carbon capture and storage (CCS) projects in the Adavale basin.