From 1 - 10 / 287
  • Case Study: GeoFrame software helps Geoscience Australia provide quick access to 2D and 3D seismic survey data within newly released license/permit in support of successful Australian Acreage Release bidding rounds

  • A regional seismic survey in north Queensland, with acquisition paremeters set for deep crustal imaging, show a potential geothermal target beneath about 2 km of sediments. Beneath the sedimentary structure there appears to be an area of low seismic reflection signal from about 1 s to 4 s. Combined with the relatively low gravity signature over this location, this area of low seismic reflection signal could be interpreted as a large granite body, overlain by sediments. This body lies near an area of high crustal temperature and suggests a potential geothermal energy target.

  • In 2006, deep seismic reflection profiling was carried out along six transects across the Mount Isa Inlier. The seismic lines were jointly funded by the Geological Survey of Queensland, Geoscience Australia, the Predictive Mineral Discovery Cooperative Research Centre and Zinifex Pty Ltd. (now Oz Minerals). In 2007, a further three seismic lines were collected by Geoscience Australia and the Geological Survey of Queensland from Cloncurry to south of Charters Towers via Croydon and Georgetown. This paper presents some highlights from the geological interpretations of the seismic lines.

  • Seismic line 07GA-IG1, described here, forms part of the Isa-Georgetown-Charters Towers seismic survey that was acquired in 2007. The seismic line is oriented approximately northeast-southwest and extends from northwest of Cloncurry in the southwest to east of Croydon in the northeast (Figure 1). The acquisition costs for this line were provided jointly by Geoscience Australia and the Geological Survey of Queensland, and field logistics and processing were carried out by the Seismic Acquisition and Processing team from Geoscience Australia. Six discrete geological provinces have been interpreted on this seismic section (Figure 2). Two of these, the Numil and Abingdon Provinces, only occur in the subsurface. The Mt Isa Province occurs in the southwest, with the Kowanyama Province occurring on the middle of the section and the Etheridge province in the northeast. The Millungera Basin, first observed on two seismic lines in the 2006 Mt Isa seismic survey, occurs beneath shallow cover of the Jurassic-Cretaceous Carpentaria Basin and sits above the Kowanyama Province.

  • Seismic line 07GA-GC1, described here, forms part of the Isa-Georgetown-Charters Towers seismic survey that was acquired in 2007. The seismic line is oriented approximately northwest-southeast and extends from east of Georgetown in the northwest to south of Charters Towers in the southeast (Figure 1). The acquisition costs for this line were provided jointly by the Geological Survey of Queensland and Geoscience Australia, and field logistics and processing were carried out by the Seismic Acquisition and Processing team from Geoscience Australia. Seven discrete geological provinces have been interpreted on this seismic section (Figure 2). Two of these, the Abingdon and Sausage Creek Provinces, only occur in the subsurface. The upper crustal part of the seismic section is dominated by the Etheridge and Cape River Provinces, but the seismic line also crossed the Broken River Province and the Drummond and Burdekin Basins.

  • Deep-seismic reflection data across the Archaean Eastern Goldfields Province, northeastern Yilgarn Craton, Western Australia have provided information on the crustal architecture and on several of its highly mineralised belts. The seismic reflection data contain has images of several prominent crustal scale features, including an eastward thickening of the crust, subdivision of the crust into three broad layers, the presence of a prominent east dip to the majority of the reflections and the interpretation of three east-dipping crustal-penetrating shear zones. These east-dipping shear zones are major structures that subdivide the region into four terranes. Major orogenic gold deposits in the Eastern Goldfields Province are spatially associated with these major structures. The Laverton Tectonic Zone, for example, is a highly mineralised corridor that contains several world-class gold deposits plus many smaller deposits. Other non crustal-penetrating structures within the area do not appear to be as well endowed metallogenically as the Laverton structure. The seismic reflection data have also imaged a series of low-angle shear zones within and beneath the granite-greenstone terranes. Where the low-angle shear zones intersect the major crustal-penetrating structures, a wedge shaped geometry is formed. This wedge geometry forms a suitable fluid focusing geometry where upward to sub-horizontal moving fluids are focused and then distributed into the nearby complexly deformed greenstones.

  • A ~400 km long deep crustal reflection seismic survey across central Victoria, Australia, was carried out in 2006 as a collaborative project between the pmd*CRC, Geoscience Australia, the Victorian Government, Ballarat Goldfields NL, Gold Fields Australasia Pty Ltd and Perseverance Corporation Ltd, using the facilities of the National Research Facility for Earth Sounding (ANSIR). The aim was to cross several Neoproterozoic-Palaeozoic basement zones and provide information on the crustal architecture, particularly across the highly prospective Palaeozoic rocks occurring along strike to the north of the major Victorian goldfields, such as Bendigo. In the west, the Moyston Fault is a major east-dipping planar fault near the eastern edge of the Grampians-Stavely Zone, which was probably the eastern margin of continental Australia in the Cambrian. It cuts through the entire crust to the Moho. The Stawell Zone, immediately east of the Moyston Fault, has the geometry of a doubly vergent wedge. The boundary between the Stawell Zone and the Bendigo Zone farther to the east is the Avoca Fault, which appears to be a west-dipping listric fault that links to the Moyston Fault at a depth of about 22 km, forming a Y-shaped geometry. Internal faults in the Stawell and Bendigo zones are almost entirely west-dipping listric faults, which cut deep into the highly reflective lower crust, interpreted to be stacked ? Cambrian oceanic crust. Previous models advocating the presence of a mid-crustal detachment are not supported by these deep crustal scale faults. The boundary between the Bendigo and Melbourne zones, the Heathcote Fault Zone, forms a zone of strong west-dipping reflections about three kilometres wide to a depth of at least 20 km, and possibly to the Moho. The fault zone is complex and contains a boninite-tholeiite association along with blueschists in a serpentinite-matrix melange, and oceanic sedimentary rocks. The Melbourne Zone contains a deformed sedimentary pile up to 15 km thick, and contains previously unrecognised north-dipping listric faults, interpreted to be thrusts. The Governor Fault separates the Melbourne Zone from the Tabberabbera Zone and contains similar rocks to the Heathcote Fault Zone. Near the surface, the Governor Fault dips to the north at about 10°. The seismic character of the lower crust below the Melbourne Zone (the "Selwyn Block") is significantly different to that observed below the Bendigo and Stawell zones, and consists of several very strong subhorizontal reflections about 5-6 km thick starting at about 18 km depth, with a less reflective zone below it. In summary, the deep seismic data across central Victoria has allowed the geometry of the rocks and structures mapped at the surface to be projected through the entire crust, thus providing important constraints to test previous tectonic models.

  • Extended abstract reporting on status of geophysical work being conducted within the Remote Eastern Frontiers project.

  • Regional seismic reflection data in hard rock areas contains more shallow information than might first be supposed. Here I use a subset of the 2005 Tanami Seismic Survey data to show that near surface features can be defined, including paleochannels, Palaeozoic basins and structures within the Proterozoic basement. Successful imaging depends on correct determination of refraction statics, including identification of refractor branches, and use of a floating or intermediate datum during seismic reflection processing. Recognition of steep stacking velocity gradients associated with surface referenced processing aids velocity analysis and can further delineate areas of thicker regolith in palaeochannels. The first arrival refraction analysis can also be applied in more detail to estimating thickness of regolith and depth to economic basement in areas of sedimentary cover.