From 1 - 10 / 395
  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to sediment oxygen demand measurements undertaken on seabed sediments (0-2 cm).

  • The Lord Howe Island survey SS06-2008 in April 2008 aboard the RV Southern Surveyor was a collaboration between the University of Wollongong and Geoscience Australia. The survey was also an activity of the Commonwealth Environment Research Facilities' (CERF) Marine Biodiversity Hub, of which Geoscience Australia is a partner, and will contribute to the revised Plan of Management for the Lord Howe Marine Parks. The objectives of the survey were to map the morphology and benthic environments of the shallow shelf that surrounds Lord Howe Island as well as the deeper flanks of this largely submarine volcano. Of particular interest was the apparent drowned reef structure on the shelf and the spatial distribution of seabed habitats and infauna. The data collected are required to better understand the history of reef growth at Lord Howe Island, which sits at the southernmost limit of reef formation, and links between the physical environment and ecological processes that control the spatial distribution of biodiversity on the shelf. The morphology of the flanks of the submarine volcano was also examined to reveal whether they provide evidence of major erosional and depositional processes acting on the volcano. This report provides a description of the survey activities and the results of the processing and initial analysis of the data and samples collected.

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Plans as Key Ecological Features (KEFs). Although poorly studied, these banks and terraces have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program Marine Biodiversity Hub, Geoscience Australia in collaboration with the Australian Institute of Marine Science undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions up to 1 m deep (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos (Fig .1). A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. We used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, (i.e. with or without scour mark) and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate banks. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • Flythrough movie showing the bathymetry of the shelf along the coast of southeast Tasmania, highlighting rock reefs as benthic habitats. The bathymetric image is derived from multibeam sonar collected in 2008 and 2009 using a 300 kHz Simrad EM3002 system on RV Challenger and gridded at 3 - 4 m resolution. Key features on the shelf include low relief (< 5 m) reefs on the outer shelf of Freycinet Peninsula and inner shelf of Tasman Peninsula, high relief (50-90 m) reefs surrounding Hippolyte Rocks, and extensive fractured reefs around The Friars to the south of Bruny Island. All reefs provide hard substrate for kelp gardens and diverse sponge communities. The southeast Tasmanian shelf is a study site for the Marine Biodiversity Research Hub, funded through the Commonwealth Environment Research Facilities (CERF) programme. Survey work was carried out as a collaboration between Geoscience Australia and University of Tasmania (Institute for Marine & Antarctic Studies). Further information is provided in GA Record 2009/43.

  • This resource contains surface sediment data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) during the period from 2-29 May 2016 on the RV Solander (survey SOL6432/GA4452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises the results of sediment oxygen demand experiments undertaken on seabed sediments. A detailed account of the survey is provided in Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2016. Bynoe Harbour Marine Survey 2017: GA4452/SOL6432 Post-survey report. Record 2017/04. Geoscience Australia, Canberra. Thanks to the crew of the RV Solander for help with sample collection, Matt Carey, Craig Wintle and Andrew Hislop from the Observatories and Science Support at Geoscience Australia for technical support and Jodie Smith for reviewing the data. This dataset is published with the permission of the CEO, Geoscience Australia

  • We undertook a biological data acquisition program as part of the transit of the R.V. Southern Surveyor between Darwin and Cairns 15-24 October 2012. The overarching aim of this program was to use an ROV and benthic sled to collect benthic marine information and specimens for biodiversity and biodiscovery research in areas previously mapped by Geoscience Australia during survey GA-276, including a bank (Area I) and terrace/hole feature within the proposed Wessel Islands CMR (Area II). This study focuses on sessile invertebrates such as sponges and octocorals due to their ecological importance as habitat providers and their chemical importance as sources of marine natural products and medicines. In less than 24 hours of sampling effort, survey SS2012/t07 resulted in 261 voucher specimens which will be used for biodiversity and natural products research. A total of 49 samples are to be lodged at the ABL, and samples with weights larger than 300 g will be sent to the NCI for screening of active compounds against cancer and HIV. Sponges were the most abundant group collected based on both biomass (~ 139 kg) and number of voucher specimens (93), followed by cnidarians (30 kg, 73 vouchers), particularly hard corals (23 kg, 11 vouchers). As expected the top of the bank in Area I had a seemingly diverse and abundant sessile invertebrate community, with consistent patchy occurrence of sponges, octocorals, and hard corals. The terrace at in Area II supports moderate densities of sponges and octocorals, while the adjacent deep hole at ~ 100 m seems to be covered with muddy gravel and supports scattered mobile and sedentary invertebrates, of which crinoids dominate, as well as skates and numerous small demersal fish.

  • Ausgeo News Article for the release of the Australian Bathymetry and Topography Grid June 2009

  • No abstract available