ground-motion models
Type of resources
Keywords
Publication year
Topics
-
The 6th Generation seismic hazard model of Canada is being developed to generate seismic design values for the 2020 National Building Code of Canada (NBCC2020). Ground-motion models (GMMs) from the Next Generation Attenuation (NGA)-West 2 and NGA-East programs are used and epistemic uncertainty in ground-motion models is captured through the use of a classical weighted logic tree framework. For the first time, seismic hazard is computed directly on primary (e.g. A-E) seismic site classes from their time-averaged shear wave velocities in the upper 30 m of the crust (VS30). This approach simplifies the way end users will determine seismic design values for a given location and site class, while having other technical advantages such as capturing epistemic uncertainty in site amplification models. It will remove the need for separate site amplification look-up tables in the building code, enabling users to simply supply their location and site class to determine seismic design values. In general, the new ground- motion models predict higher hazard in most Canadian localities due to a variable combination of changes in median ground motions, site amplification and aleatory uncertainty.
-
Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions. Abstract presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference