airborne digital data
Type of resources
Keywords
Publication year
Service types
Topics
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric uranium image has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00083 degrees (approximately 88m).The data are in nanoTesla (or nT). It is estimated that 33 500 000 line-kilometres of survey data collected by State and Territory geological surveys and Geoscience Australia were acquired to produce the 2019 national magnetic grid. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-15 geomagnetic reference model using a data representative date and elevation representative of the survey. The upward continuation manipulates the magnetic data to enhance the large deep source anomalies and minimises shallow anomalies. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00083 degrees (approximately 88m).The data are in nanoTesla (or nT). It is estimated that 33 500 000 line-kilometres of survey data collected by State and Territory geological surveys and Geoscience Australia were acquired to produce the 2019 national magnetic grid. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-15 geomagnetic reference model using a data representative date and elevation representative of the survey. The upward continuation manipulates the magnetic data to enhance the large deep source anomalies and minimises shallow anomalies. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Eucla Basin 2 Loongana TMI Grid Geodetic has a cell size of 0.00042 degrees (approximately 43m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 114979 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Eucla Basin 5 North Forrest Doserate grid geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Forrest, WA, 2010 (Eucla Basin 5N). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 73785 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The Digital Elevation Model represents ground surface topography between points of known elevation. The elevation data was calculated using the altimeters and Global Positioning System (GPS) sensor used for the benefit of airborne magnetic and radiometric data on the same survey. The elevation is the height relative to the Australian Height Datum GDA94 (AUSGEOID09). The processed elevation data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Forrest, WA, 2010 (Eucla Basin 5N) survey were acquired in 2010 by the WA Government, and consisted of 73785 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Seemore Eucla Basin 1 Magnetic Grid Geodetic has a cell size of 0.00042 degrees (approximately 43m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 105710 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The Digital Elevation Model represents ground surface topography between points of known elevation. The elevation data was calculated using the altimeters and Global Positioning System (GPS) sensor used for the benefit of airborne magnetic and radiometric data on the same survey. The elevation is the height relative to the Australian Height Datum GDA94 (AUSGEOID09). The processed elevation data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Seemore, WA, 2009 (Eucla Basin 1) survey were acquired in 2009 by the WA Government, and consisted of 105710 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Naretha, WA, 2009 (Eucla Basin 3) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 124870 line-kilometres of data at 200m line spacing and 50m terrain clearance.