From 1 - 10 / 3958
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • This folder contains the reports and supporting digital datasets from four geological studies published by SRK (later FrOGTech) consultants, between 2001 and 2007. Known as the OZ SEEBASE Compilation (Structurally Enhanced View of Economic Basement), the studies interpreted the three dimensional character of Australian sedimentary basins and their basement.

  • Sniffer Files The 'Sniffer' or Direct Hydrocarbon Detection (DHD) technique used to detect hydrocarbon seepage offshore involves towing a submerged tow-fish close to the seafloor and continuously pumping seawater into a geochemical laboratory on board where the hydrocarbons are extracted and measured by gas chromatography. The Direct Hydrocarbon Detection (DHD) method continuously analyses C1-C8 hydrocarbons within seawater. The method used on the RV Rig Seismic is as follows. Seawater is continuously delivered into the geochemical laboratory onboard the ship via a submersible fish (which is towed approximately 10 m above the seafloor). The seawater is degassed in a vacuum chamber and the resulting headspace gas is injected into three gas chromatographs, which sequentially sample the flowing gas stream and measure a variety of light hydrocarbons. Total hydrocarbons (THC) are measured every thirty seconds, light hydrocarbons (C1-C4) are measured every two minutes and C5 to C8 are measured every 8 minutes. Fluorometer and Aquatrack Fil In October 1998, the Australian Geological Survey Organisation (AGSO) carried out field trials of three commercially available towed fluorometers; Aquatracka (Chelsea Instruments), SAFIRE (WetLabs), FLF (WetLabs). These instruments were pre-selected on manufacturer specifications as potentially the most suitable, compared to other fluorometers currently on the market, for the detection of polycyclic aromatic hydrocarbons (PAH) present in crude oils seeping into the marine environment. The fluorometers were set with an excitation wavelength in the range 239 nm to 260 nm and fluorescence was monitored over the range 340 nm to 360 nm. SAFIRE is a multi-wavelength instrument, which enabled simultaneous use of several excitation and emission wavelengths. All three fluorometers were mounted on deck and seawater was pumped through them. The Aquatracka instrument analysed deep water pumped to the surface by the "Sniffer" submersible system.

  • PLEASE NOTE: These data have been updated. See Related Links for new data. Geodatabase of the Commonwealth Coastal Waters (State/Territory Powers) Act 1980 - An Act to extend the legislative powers of the States/Northern Territory in and in relation to coastal waters.

  • The 'Major crustal boundaries of Australia' map synthesizes more than 30 years of acquisition of deep seismic reflection data across Australia, where major crustal-scale breaks have been interpreted in the seismic reflection profiles, often inferred to be relict sutures between different crustal blocks. The widespread coverage of the seismic profiles now provides the opportunity to construct a map of major crustal boundaries across Australia. Starting with the locations of the crustal breaks identified in the seismic profiles, geological (e.g. outcrop mapping, drill hole, geochronology, isotope) and geophysical (e.g. gravity, aeromagnetic, magnetotelluric) data are used to map the crustal boundaries, in map view, away from the seismic profiles. For some of these boundaries, a high level of confidence can be placed on the location, whereas the location of other boundaries can only be considered to have medium or low confidence. In other areas, especially in regions covered by thick sedimentary successions, the locations of some crustal boundaries are essentially unconstrained. The 'Major crustal boundaries of Australia' map shows the locations of inferred ancient plate boundaries, and will provide constraints on the three dimensional architecture of Australia. It allows a better understanding of how the Australian continent was constructed from the Mesoarchean through to the Phanerozoic, and how this evolution and these boundaries have controlled metallogenesis. It is best viewed as a dynamic dataset, which will have to be further refined and updated as new information such as seismic reflection data becomes available.

  • Outcrop geology was obtained directly from the following 1:250 000 map sheets: Marble Bar, Nullagine, Port Hedland and Yarrie. This dataset consists of both raster and vector data. Raster data which is unsigned 8 bit integer, can be viewed in Arc/Info, ArcView, MapInfo, ERMapper, ERViewer and ArcExplorer. Raster data which is 4 byte real data, can only be viewed and manipulated with an image processing package such as ERMapper.

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file presents the future climate wind hazard. The file name indicates the hazard being presented, e.g. wspd_rp_1000_max.tif is the 1000 year Return Period (RP - equivalent to Average Reccurrence Interval (ARI)) and is the maximum wind speed from all directions. The local wind multipliers adjust the 3-second gust regional RP wind speed from 10 m above ground level to ground level with the consideration of topography and shielding effects. Eight cardinal directions are calculated for every raster cell and the maximum of these values is then derived and presented here.