Keyword

Earth Sciences

20271 record(s)
 
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
From 1 - 10 / 20271
  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.

  • Map produced for the Australian Federal Police showing the logged positions of Vessel Immacolata on the 2nd and 3rd October 2007 on a background on AUS808 and AUS809 and the Cable Protection Zone.

  • The Process and Outcomes of Integrating CRC Work into Industry

  • Legacy product - no abstract available

  • Measuring vulnerability to hazards is necessary to understand the true extent of risk. Determining social vulnerability relies on the integration of quantitative and qualitative methodologies. Qualitative approaches explore the capacity of communities to manage risk. Quantitative methods integrate data and analytical processes to develop vulnerability measures. Geoscience Australia (GA) has developed tools for modelling natural hazards and assessing vulnerability, building exposure (NEXIS) and infrastructure resilience (CIPMA). Work on social vulnerability began with the Cities Project in 1996. In 2008 GA developed a new method for assessing social vulnerability, within the Critical Infrastructure Project (CIP). CIP takes an all hazards approach to vulnerability, to include impacts like lifeline disruption. This paper discusses a quantitative method for measuring social vulnerability to hazards. The method uses nationally available data to assess individual communities - relative vulnerability. The method allows for a standard approach to identifying highly vulnerable areas.