EARTH SCIENCES
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
<div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
Abstract submitted for presentation to European Geosciences Union General Assembly, April, 2019
-
To deliver open data, government agencies must deal with legacy processes, both social and technical, that contain barriers to openness. These barriers limit the true usability of open data - how it can be used over time and in multiple contexts - and are critical to address as governments seek to expose open data. Linked Data (LD) has always been, at its core, about ensuring the FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) by focusing on the identity and relationship of entities and exposing their context to consumers of data, even if these principles have only recently been named FAIR. A fundamental component of LD is that entities are identified by sustainable URI references called Persistent Identifiers (PIDs) which retain their utility over time despite system and organisation change. This poster will show how Geoscience Australia (GA) is applying the use of LD & PIDS in a real world, production IT, setting. Long running operational processes have been incrementally advanced to deliver data from relational databases as LD. Policies, practices and tools have developed and applied to support these LD delivery. The key components are: Data transformation tools: reliant on a robust internal data schema, the Corporate Data Model, these tools export views of it as XML or CSV publicly which is then converted to RDF in another step Overarching data model: a Semantic Web ontology that outlines the types of entities delivered publicly by GA and their macro relations. To date, public entities are Datasets, Web Services, vocabulary terms and geological Samples, Sites Surveys and Stratigraphic Units. New objects will include images with multiple formats and resolutions PID service: an application that manages a series of PID redirection rules PID governance policy: the defined process to support the agency with its multiple teams and their different data sources to have consistent application of entity identification rules and ensure uniqueness across multiple systems in the same registers pyLDAPI data service tools: a Web API tool that can present LD endpoints for entities according to given ontologies Cloud infrastructure as code (infracode): Provisioning of LD data holding RDF triple stores on the public cloud following agency best practice in delivering scalable solutions. The tools used are Apache’s Jena/Fuseki triplestore and API deployed on Amazon Web Services (AWS) with scalability through AWS Elastic Load Balancer and Elastic File Store components. Further work will explore suitability of the new triple store on AWS Neptune.
-
This poster will present on the tools and their implementation for structured linked data at Geoscience Australia (GA). The datasets include: samples, sites, surveys, placenames. The goal is to have persistent identifiers and their profiles is governed through organisational policy with entities and relationships conceptualised in ontologies. Tools include the PID service, pyLDAPI https://github.com/RDFLib/pyLDAPI, and including current work to investigate the new content negotiation by profile – separate from media type, standardising these profiles and the expression of relationships to other features. Profile templates are implemented in entity specific pyLDAPI implementations with data transformed and delivered as standard formats and profiles, sourced from an internal, organisational point of truth – a common organisational data model with well-defined internal identifiers. Applications using these mechanisms to publish such open data at the feature level granularity and their relationships include the geoscience AusGIN portal (http://www.geoscience.gov.au/) and Location Index initiative (LOC-I).
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Australia-Wide Airborne Geophysical Survey 2 (AWAGS2), 2007 (P1152), radiometric line data, AWAGS levelled were acquired in 2007 by Geoscience Australia at 75000m line spacing and 80m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Australia-Wide Airborne Geophysical Survey 2 (AWAGS2), 2007 survey were acquired in 2007 by Geoscience Australia at 75000m line spacing and 80m terrain clearance.
-
Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne (free air grid) is a free air anomaly grid for the 2019 Australian National Gravity Grids B series. This gravity survey was acquired under the project No. 202008. This gravity anomaly grid is derived from ground observations stored in the Australian National Gravity Database (ANGD) as at September 2019, supplemented with offshore data sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. Airborne gravity and gravity gradiometry data were also included to provide better resolution to areas where ground gravity data was not of a suitable quality. Out of the approximately 1.8 million gravity observations, nearly 1.4 million gravity stations in the ANGD together with Airborne Gravity surveys totaling 345,000 line km and 106,000 line km of Airborne Gravity Gradiometry were used to generate this grid. The grid shows free air gravity anomalies over Australia and its continental margins. The ground and airborne gravity data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. Station spacing varies from approximately 11 km down to less than 1 km, with major parts of the continent having station spacing between 2.5 and 7 km. Airborne surveys have a line spacing ranging from 0.5 km to 2.5 km. The grid has a cell size of 0.00417 degrees (approximately 435m). The data are given in units of um/s^2, also known as 'gravity units', or gu.
-
An overview of Geoscience Australia's space-related work.
-
<p>The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory and the Normanton and Cloncurry 1:1 Million map sheets in Queensland. CGG Aviation (Australia) Pty. Ltd. flew the 67,700-line kilometre survey between 2017 and 2018 using the TEMPEST® airborne electromagnetic system. Flown at 20-kilometre line spacing, data were acquired and processed under contract to Geoscience Australia. <p>This data package supersedes and replaces two earlier releases: June 11, 2018, and December 2018 (eCatID 120948) with revised calibrations and processing. Along with the regionally spaced (20 km) flight lines, it now includes 1,500 line kilometres of infill flying that was funded by private exploration companies and not previously released in view of time-bounded confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release (Phase 1) Package contains the final survey deliverables produced by the contractor CGG, including: <p>a) The operations and processing report. <p>b) Final processed electromagnetic, magnetic and elevation point located line data. <p>c) Final processed electromagnetic, magnetic and elevation grids. <p>d) Conductivity estimates generated by the EM Flow® conductivity depth-imaging algorithm. <p>e) Graphical multi-plots of line data and EM Flow® conductivity sections. <p>f) Graphical stacked EM Flow® conductivity sections. <p>g) ESRI shape-files containing the flight line locations. <p>An updated release package (Phase 2), which contains results from our in-house inversion of the EM data (from this Phase 1 release), which includes the regional and infill areas are downloadable from the link provided in the Downloads tab.