Basin Analysis
Type of resources
Keywords
Publication year
Scale
Topics
-
This abstract is to be submitted for the Great Artesian Basin Coordinating Committee Researcher's Forum on 27th-28th of March 2013, as part of the Great Artesian Basin Water Resource Assessment launch at the event.
-
Coastal aquifers are vulnerable to seawater intrusion, which is a significant issue in Australia. Geoscience Australia and the Nation Centre of Groundwater Research and Training undertook an assessment of Australia's vulnerability to seawater intrusion. The assessment utilised multiple approaches, including a vulnerability factor analysis; typological analysis; mathematical analysis; qualitative and quantitative analysis; and future land surface inundation and population growth analysis. This is presented as an abstract for the 2013 IAH Congress.
-
The Eucla-Gawler 2D deep seismic survey L203 consists of one 834 km seismic line, 13GA-EG1. The data acquisition commenced on 28 November 2013, from Haig, WA and continued east along a road/track parallel to the Trans Australian Railway ending at Tarcoola, SA, on 7 February 2014. The reflection seismic data processing used standard processing and included special attention on refraction statics and deconvolution essential for optimal reflection imaging. High fold stacking provided enhanced seismic reflections in regions of no or weak reflectivity at standard fold. For most of the seismic line, the 20 s seismic data provide images of the full depth of the crust through this region.
-
<p>A regional mapping program conducted by Geoscience Australia addressed stratigraphic and structural aspects of exploration risk within the Triassic succession of the Roebuck Basin and parts of the adjacent sub-basins (central North West Shelf, Figure 1). <p>Seismic horizons of regional significance were mapped using 2D and 3D seismic surveys. Seismic survey coverage is shown in Figure 1. 2D surveys include regional deep surveys such as AGSO s110, AGSO s120, and PGS New Dawn. 3D surveys include Admiral, Beagle, CNOOC, Curt, Lord, Naranco, Polly, Whitetail, and a 5 x 5 km extract (used with permission) from the TGS Capreolus MC3D. Synthetic seismograms (Nguyen et al., 2019) were used to tie seismic horizons to wells. <p>The mapped horizons are placed within a regional tectonostratigraphic framework by Abbott et al. (2019, their Figure 2). This data pack comprises seismic horizon grids and isochron grids generated from the TR10.0_SB (base Triassic), TR17.0_SB (Mid–Triassic), and J10.0_SB (top Triassic) seismic horizons (Figure 2). Fault maps compiled at the TR10.0 _SB and J10.0_SB are also included.
-
<p>This data package includes raw (Level 0) and reprocessed (Level 1) HyLogging data from 25 wells in the Georgina Basin, onshore Australia. This work was commissioned by Geoscience Australia, and includes an accompanying meta-data report that documents the data processing steps undertaken and a description of the various filters (scalars) used in the processed datasets. <p>Please note: Data can be made available on request to ClientServices@ga.gov.au
-
The Onshore Basin Inventory is a summary of data and geological knowledge of hydrocarbon-prone onshore basins of Australia. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins. Under the Exploring for the Future (EFTF) program, Geoscience Australia expanded this work to compile the Onshore Basin Inventory volume 2, which covers the Officer, onshore Canning and Perth basins. These reports provide a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage. Each report also summarises aspects that require further work. The Onshore Basin Inventory has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF energy work program. Here we provide an overview of the Onshore Basin Inventory, with emphasis on its utility in shaping the EFTF energy systems data acquisition and analysis program. <b>Citation:</b> Carr, L.K., Bailey, A.H.E., Palu, T.J. and Henson, P., 2020. Onshore Basin Inventory: building on Geoscience Australia’s pre-competitive work program with Exploring for the Future In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.
-
As part of the Exploring For the Future program 2022 showcase, Geoscience Australia (GA) in collaboration with the Australian Institute of Geoscientists held an Airborne Electromagnetics (AEM) workshop in Perth on 11th August 2022. The workshop comprised the following: - An introduction to GA's 20 km spaced continent-wide AusAEM program, by Karol Czarnota - How the Western Australia government has successfully used 20 km spaced AEM data, by Klaus Gessner - An introduction to AEM, surveying, and quality control given by Yusen Ley-Cooper - An introduction to inverse theory presented by Anandaroop Ray - Hands-on AEM modeling and inversion using HiQGA.jl by Anandaroop Ray - Integrating geophysics and geology in subsurface interpretation, by Sebastian Wong - Avoiding the 10 most common pitfalls in AEM interpretation according to Neil Symington YouTube video from the workshop, as well as data and code to follow along with the videos can be found on GA's GitHub at <a href=https://github.com/GeoscienceAustralia/HiQGA.jl/tree/workshop><u>this link.</u></a>
-
Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin. These observations will inform the characterisation of petroleum systems within the Upper Cretaceous succession, especially in the underexplored deep-water region. Presented at the 2022 Australian Petroleum Production & Exploration Association (APPEA)
-
The Great Artesian Basin (GAB) is one of Australia's most significant hydrogeological entities covering more than 1.7 million square kilometres, underlying parts of Queensland, New South Wales, South Australia and the Northern Territory. The GAB contains a vast volume of underground water (estimated at 64,900 million megalitres) and is the largest groundwater basin in Australia. Groundwater resources in the GAB are used to support the pastoral, agricultural, and resource sectors as well as supplying water to inland communities. Properly managing these groundwater resources, often for competing interests, requires an understanding of how the groundwater system works at a regional scale. This atlas presents a compilation of maps documenting some of the key regional geological, hydrogeological and hydrochemical aspects of the GAB. It provides insights into the current understanding of the regional geometry and physical characteristics of the rocks and water contained within this vast groundwater basin and baseline information against which future changes can be assessed.