From 1 - 10 / 68
  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>The thickness and thermal structure of continental lithosphere influences the location of seismic and volcanic hazards and is important for predicting long-term evolution of landscapes, sedimentary basins, and the distribution of natural resources. In this project, we have developed new, continental-scale models of the thermomechanical structure of the Australian plate. We begin by compiling an inventory of >15,000 geochemical analyses of peridotitic xenoliths and xenocrysts from across the continent that have been carried up to the surface in volcanic eruptions. We apply thermobarometric techniques to constrain their pressure and temperature of equilibration and perform steady-state heat flow modelling to assess the paleogeotherm beneath these sites. We subsequently use the paleogeotherms as constraints in a Bayesian calibration of anelasticity at seismic frequencies to provide a mapping between seismic velocity and temperature as a function of pressure. We apply this method to several regional-scale seismic tomography models, allowing the temperature to be continuously mapped throughout the Australian lithospheric and asthenospheric mantle. Our models include assessment of uncertainties and can be used to query thermomechanical properties, such as lithospheric thickness, heat flow through the Moho, and the Curie depth.</div><div><br></div><div><strong>Citation: </strong>Hoggard, M.J., Hazzard, J., Sudholz, Z., Richards, F., Duvernay, T., Austermann, J., Jaques, A.L., Yaxley, G., Czarnota, K. & Haynes, M., 2024. Thermochemical models of the Australian plate. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra. https://doi.org/10.26186/149411</div>

  • <div>Strontium isotopes (87Sr/86Sr) are useful to trace processes in the Earth sciences as well as in forensic, archaeological, palaeontological, and ecological sciences. As very few large-scale Sr isoscapes exist in Australia, we have identified an opportunity to determine 87Sr/86Sr ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa; last access: 15 December 2022). The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (< 2 mm) grain-size fraction was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release <em>total</em> Sr. The Sr was then separated by chromatography and the 87Sr/86Sr ratio determined by multicollector-inductively coupled plasma mass spectrometry. Results demonstrate a wide range of Sr isotopic values (0.7048 to 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a > 500 km-long northwest-southeast-trending unradiogenic anomaly (87Sr/86Sr < 0.7182). Where sedimentary carbonate or mafic/ultramafic igneous rocks dominate, low to moderate 87Sr/86Sr values are generally recorded (medians of 0.7387 and 0.7422, respectively). In proximity to the outcropping Proterozoic metamorphic basement of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, radiogenic 87Sr/86Sr values (> 0.7655) are observed. A potential correlation between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith Sr isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting Sr isoscape and future models derived therefrom can also be utilised in forensic, archaeological, paleontological and ecological studies that aim to investigate, e.g., past and modern animal (including humans) dietary habits and migrations. The new spatial Sr isotope dataset for the northern Australia region is publicly available (de Caritat et al., 2022a; https://dx.doi.org/10.26186/147473; last access: 15 December 2022).</div> <b>Citation:</b> de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, <i>Earth Syst. Sci. Data</i>, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, <b>2023</b>.

  • <div>This Record documents the efforts of Geoscience Australia (GA) in compiling a New South Wales (NSW) Uranium–Lead (U–Pb) geochronology interpreted age compilation (version 1.0), utilising the MinView data from the Geological Survey of New South Wales (GSNSW), GA’s ‘in house’ storage of SHRIMP (Sensitive High Resolution Ion Micro Probe) ages, and other disparate publication sources e.g. academic journal articles and university theses. Here we describe both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. This initial release of the NSW geochronology compilation comprises of 1007 U–Pb ages of named and unnamed rock units in NSW.&nbsp;</div><div><br></div><div>The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This NSW U–Pb compilation represents the third in a series of compilation publications (Records and Datasets) for the southern states of Australia, which are a foundation for the second phase of the Exploring for the Future initiative over the period 2020–2024. All geochronology compilations in this series of Isotopic Atlas of Australia Records are available online from the Geochronology and Isotopes Data Portal.</div><div><br></div>

  • <div>Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no empirical national-scale maps of regolith mineralogy are available in Australia. Satellite-derived mineralogical proxy products exist, however, they require on-the-ground validation. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a study extending a previous pilot project for such a national regolith mineralogy database and atlas.</div><div>The area chosen for this study includes the part of South Australia not inside the pilot project, which focussed on the 2020-2024 Exploring for the Future (EFTF) Darling-Curnamona-Delamerian (DCD) region of southeastern Australia, as well as the EFTF Barkly-Isa-Georgetown (BIG) region of northern Australia. The South Australian part of the study was selected because the Geological Survey of South Australia indicated interest in expanding the pilot (DCD) project to the rest of the State. The BIG region was selected because it is a ‘deep-dive’ data acquisition and analysis area within the EFTF Australian Government initiative managed at Geoscience Australia. The whole study area essentially describes a continuous north-south trans-continental transect spanning South Australia (SA), Queensland (Qld) and the Northern Territory (NT), and is herein abbreviated as SA-Qld-NT.</div><div>Two hundred and sixty four NGSA sites from the SA-Qld-NT region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both major and clay minerals of the bulk sample. The identified mineral phases were quartz, kaolinite, plagioclase, K-feldspar, nosean (a sulfate bearing feldspathoid), calcite, dolomite, aragonite, ankerite, hornblende, gypsum, bassanite (a partially hydrated calcium sulfate), halite, hematite, goethite, magnetite, rutile, anatase, pyrite, interstratified or mixed-layer illite-smectite, smectite, muscovite, chlorite (group), talc, palygorskite, jarosite, alunite, and zeolite (group). Poorly diffracting material was also quantified and reported as ‘amorphous.’ Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 weight percent (wt%) was achieved, with any mineral detection below that threshold reported as ‘trace.’ </div><div>Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are downloadable as a .csv file from the Geoscience Australia website (https://dx.doi.org/10.26186/147990).&nbsp;</div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically thought to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earths mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and/ or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.&nbsp;</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere. They are also directly related to metallogenesis and mineralisation, particularly for a number of the critical minerals, e.g., rare earth elements, niobium. In light of this, Geoscience Australia is undertaking a compilation of the distribution and geology of Australian alkaline and related rocks, of all ages, and producing a GIS and associated database of such rocks, to both document such rocks and for use in metallogenic and mineral potential studies.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Cenozoic age. The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g. extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.</div><div><br></div><div>Cenozoic alkaline and related rocks occur primarily within a belt running from Northeastern Queensland, through eastern New South Wales into Victoria and through to South Australia and Tasmania with a single occurrence in Western Australia. Compositions range from peralkaline trachytic and rhyolitic rocks to lamprophyric rocks to alkali basalts and more undersaturated feldspathoid-bearing lithologies. Ages span the entire Cenozoic but locally and regionally are more restrictive. Bodies are generally of small volume (extrusive rocks) or of small size (intrusive rocks). On the basis of location (and lithology, age and/or alkaline classification), 332 individual geologic units have been grouped into 59 informal alkaline provinces. The latter provides a simplified broad-scale overview of the distribution of the Cenozoic alkaline and related rocks of Australia but also allows for better search capabilities at broad scales in the GIS environment (overcoming the small size of many alkaline bodies).</div>

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>The continental crust directly hosts or underlies almost all mineral resources on which society depends. Despite its obvious importance its structure is poorly characterised. In particular, its density is surprisingly poorly constrained because it is difficult to directly image from the surface. Here we collate a global database of crustal thickness and velocity constraints. In combination with a compilation of published laboratory experimental constraints on seismic velocity at a range of pressures, we develop a scheme with which to convert seismic velocities into density as a function of pressure and temperature. We apply this approach to the Australian crystalline basement. We find that the Australian crust is highly heterogeneous, ranging in bulk density from 2.7—3.0 g cm-3. Finally, we explore the utility of our database for testing hypotheses about the location and endowment of mineral resources using porphyry copper deposits as an example. Our results provide an improved framework with which to explore the subsidence and thermal evolution of sedimentary basins, as well as probing relationships between deposit types and crustal architecture.</div><div><br></div><div><strong>Citation: </strong>Stephenson, S.N., Hoggard, M.J., Haynes, M.W., Czarnota, K. & Hejrani, B., 2024. Constraints on continental crustal thickness and density structure. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149336</div>

  • <div>Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>One main component of the EFTF program is the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), which is a collaborative national survey by federal government, state and territory governments, and research organizations since late 2013. The project acquires long-period magnetotelluric data on a half-degree grid spacing across Australia and provides first order electrical conductivity/resistivity structure of the Australian continental lithosphere. This reconnaissance dataset improves the understanding of lithospheric structures and tectonic evolution of Australian plate. It provides a framework and a bottom-up approach to identify newly resource potential regions for infill surveys and further study. The dataset also uses for assessment and prediction of geomagnetic storm’s nature hazards. </div><div><br></div><div>This data release contains a 3D resistivity model and site locations. The 3D model was derived from publicly available AusLAMP data in Australia (excluding western Australia). The model was projected to GDA94 MGA Zone 54 and was converted into SGrid/ASCII format and geo-referenced TIFF format.</div><div><br></div><div>We acknowledge the traditional custodians of the country where the data were collected. We also acknowledge the support provided by individuals and communities for land access and data acquisition, without whose cooperation these data could not have been collected. The 3D model was produced on the National Computational Infrastructure, which is supported by the Australian government.</div><div><br></div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. These results provide additional information about the lithospheric architecture and geodynamic processes, as well as valuable precompetitive data for resource exploration in this region. This data release package includes processed MT data, a preferred 3D resistivity model projected to GDA94 MGA Zone 54 and associated information for this project. The processed MT data were stored in EDI format, which is the industry standard format defined by the Society of Exploration Geophysicists. The preferred 3D resistivity model was derived from previous EFTF AusLAMP data acquired from 2016-2019 and recently acquired AusLAMP data in Queensland. The model is in SGrid format and geo-referenced TIFF format.

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract <strong> </strong></div><div><br></div><div><strong>Short abstract: </strong>There is an increased international focus on achieving high environmental, socio-economic, and governance (ESG) outcomes within mineral supply chains, in addition to delivering positive economic results. Mineral exploration and development projects must balance these disparate objectives to the satisfaction of separate stakeholders. However, the challenge of reconciling distinct preferences can obscure viable outcomes and confound project selection, particularly in the early stages of project development. Here, we discuss how such investment decisions can be treated as multicriteria optimization problems. In appraising the pre-competitive potential for nickel sulphide developments, we show how this approach can be used to effectively evaluate competing objectives and to locate regions that perform best under a range of different metrics. We outline a mapping framework that identifies Australian regions that optimally balance geological potential, economic value, and environmental impact. Our workflow creates a new capability within Australia to incorporate high-level, holistic information into the earliest stages of exploration. While this abstract focuses on mineral exploration, the modelling could be extended to other Australian resource development applications. Importantly, our results further underscore the need to compile baseline ESG datasets across Australia to help drive sustainable exploration decisions.</div><div><br></div><div><strong>Citation:</strong> Walsh S.D.C., Haynes M.W. &amp; Wang C., 2024. Multicriteria resource potential mapping: balancing geological, economic &amp; environmental factors. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149250</div>

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 2 - 14th August talks included: <b>Session 1 - Architecture of the Australian Tectonic Plate</b> <a href="https://youtu.be/a8jzTdNdwfk?si=OWNlVR-FLDhF1GVM">AusArray: Australian lithosphere imaging from top to bottom</a> - Dr Alexei Gorbatov <a href="https://youtu.be/j5ox8Ke5n6M?si=YkfDno2xmZXueS1b">AusLAMP: Mapping lithospheric architecture and reducing exploration space in Australia</a> - Jingming Duan <a href="https://youtu.be/qZ6wjzx_dNc?si=NjDEzvqyEeM24-E8">Constraining the thermomechanical and geochemical architecture of the Australian mantle: Using combined analyses of xenolith inventories and seismic tomography</a> - Dr Mark Hoggard <b>Session 2 - Quantitative characterisation of Australia's surface and near surface</b> <a href="https://youtu.be/nPfa_j3_dos?si=mktfIJWXeLElIOK4">AusAEM: The national coverage and sharpening near surface imaging</a> - Dr Anandaroop Ray <a href="https://youtu.be/SU6ak98JvAw?si=DQPovulHa4poqcm0">Unlocking the surface geochemistry of Australia</a> - Phil Main <a href="https://youtu.be/Xtm45CT6e-s?si=JHU7J-ktgVrbj1Ke">Spotlight on the Heavy Mineral Map of Australia</a> - Dr Alex Walker <b>Session 3 – Maps of Australian geology like never before</b> <a href="https://youtu.be/aRISb1YYigU?si=3byJbqW0qRTqCB8-">An Isotopic Atlas of Australia: Extra dimensions to national maps</a> - Dr Geoff Fraser <a href="https://youtu.be/khSy-WAkw-w?si=F-Y67FX3jXN5zZaz">First continental layered geological map of Australia</a> - Dr Guillaume Sanchez <a href="https://youtu.be/Z3GlCJepLK4?si=k_tbaKdmxGBmoSro">An integrated 3D layered cover modelling approach: Towards open-source data and methodologies for national-scale cover modelling</a> - Sebastian Wong View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 2 - Session 1 - <a href="https://www.youtube.com/watch?v=EHBsq0-pC8c">Architecture of the Australian Tectonic Plate</a> 2024 Showcase Day 2 - Session 2 - <a href="https://youtube.com/watch?v=xih4lbDk-1A">Quantitative characterisation of Australia's surface and near surface</a> 2024 Showcase Day 2 - Session 3 - <a href="https://www.youtube.com/watch?v=qeTLc1K-Cds">Maps of Australian geology like never before</a>