From 1 - 2 / 2
  • <div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20&nbsp;km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500&nbsp;m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area &gt;2,000,000&nbsp;km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>