Authors / CoAuthors
Blevin, J.E. | Trigg, K.R. | Partridge, A.D. | Lang, S.
Abstract
The Bass Basin is a moderately explored Cretaceous to Cainozoic intracratonic rift basin on Australia?s southeastern margin. A basin-wide integration of seismic data, well logs, biostratigraphy and sequence stratigraphy has resulted in the identification of six basin phases and related megasequences/ supersequences. These sequences correlate to three periods of extension, a rift-transition phase, and two subsidence phases. The complex nature of facies relationships across the basin is attributed to the (mostly) terrestrial setting of the basin until the Middle Eocene, multiple phases of extension, strong compartmentalisation of the basin due to underlying basement fabric, and differential subsidence during extension and early subsidence phases. Evidence of the initial rift phase (Otway Megasequence) is only clearly observed in the Durroon Sub-basin and in the southwestern Cape Wickham Sub-basin. The second rift phase (Durroon Megasequence) is pervasive throughout the Bass Basin, although a full succession of this megasequence was only penetrated in the Durroon Sub-basin. The third-rift phase (Bass Megasequence) is also pervasive throughout the basin, but appears to have affected only particular depocentres such as the Pelican, Cormorant and Yolla troughs. Here, expanded syn-tectonic growth sections have been intersected. There is wide variation in facies type, environment and thickness of the Bass Megasequence due to differential rates of subsidence. Three component sequences have been recognised within the Bass Megasequence (Furneaux, Tilana and Narimba sequences), with each component sequence correlated to discrete periods of increased accommodation. The shift from rift-to-post-rift conditions (Aroo Megasequence) was signaled by waning subsidence rates and an increasing brackish influence. A wide variation in facies types, environments and thicknesses is also observed. The frequency and thickness of coals began to increase during the deposition of this megasequence, lasting from Early Eocene until the mid-Middle Eocene. A slowdown in subsidence rates allowed the aggradation of coaly facies (many geochemically characterised as ?hydrogen-rich?), indicating there was a balance between accommodation, sediment supply and peat production. The most important sequences for petroleum generation and trapping are the Bass and Aroo megasequences. Most of the coaly source rocks now typed to liquid hydrocarbon generation were deposited during the period of late Early Eocene to Middle Eocene rift-transition phase. The critical factor in sourcing accumulations from the coaly succession appears to be effective primary and secondary expulsion from the source rock and the volume of charge. Biostratigraphic studies have identified lacustrine cycles during the Late Cretaceous to Middle Eocene, with geological evidence indicating these lakes developed during times of increased accommodation. Lacustrine shales are likely to be more important as seal facies, rather than as potential source rocks. The Middle Eocene (Demons Bluff Sequence) and younger marine successions (Torquay Sequence) show low source potential and do not lie within the oil window. Optimal conditions for seal deposition occurred during lacustrine cycles in the Late Cretaceous to Early Eocene, and the mid-Eocene. Untested plays include reservoir/seal pairs associated with seven maximum flooding events in the western Bass Basin. The petroleum systems elements of the Durroon Sub-basin differ significantly from the Cape Wickham Sub-basin owing to the cessation of tectonically-driven subsidence in the eastern Bass Basin (Durroon Sub-basin) from the mid-Campanian onward.
Product Type
nonGeographicDataset
eCat Id
60919
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- ( Theme )
-
- petroleum exploration
- ( Theme )
-
- petroleum geology
- ( Theme )
-
- sequence stratigraphy
-
- AU-TASAU-VIC
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2004-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-41.0, -38.0, 144.0, 149.0]
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.