From 1 - 10 / 63
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • This dataset maps the geomorphic habitat environments (facies) for 213 Queensland coastal waterways. This version of the dataset includes 73 newly mapped estuaries, classified as 'Near pristine'. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Southern and central Great Barrier Reef lagoon coasts have a broad spectrum of river, tide and wave- dominated estuaries.

  • The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area of approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known resources of groundwater as well as major onshore hydrocarbon resources, including significant coal bed methane (CBM) that has been discovered in recent years, and also contains extensive hot-sedimentary aquifer geothermal energy systems. Additionally, the basin has potential as a greenhouse gas sequestration site and will likely play a key role in securing Australia's energy future. Finally, although no major metallic mineral deposits are currently known in the greater Eromanga Basin, there is significant potential for undiscovered uranium mineralisation. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and the 1:1,000,000 scale Surface Geology Map of Australia. Geophysical wireline logs, hydrochemistry, radiometrics, magnetic and gravity datasets were also integrated into the 3D geological map. This study has highlighted the potential of the southwest margin of the Eromanga Basin and the Euroka arch region to contain sandstone-hosted uranium mineral systems. The report demonstrates how incorporating disparate datasets in a 3D geological map can generate an integrated mapping solution with diverse applications: 1. Provide new insights into the geology and geodynamic evolution of the basin. 2. Identify hydrocarbon resource plays. 3. Assess the basin's mineral potential (e.g., sandstone-hosted uranium mineral systems). 4. Assess the basin's geothermal potential (e.g., hot-sedimentary aquifer geothermal systems). 5. Provide resource management information (e.g., groundwater). 6. Identify potential contaminants in groundwater.

  • We examine surface sediment and water column total nutrient and chlorophyll a concentrations for 12 estuaries with average water depths <4 m, and calculated sediment loads ranging from 0.2 to 10.8 kg m-2 year-1. Sediment total nitrogen, phosphorus and organic carbon concentrations vary inversely with sediment loads due to: (i) the influx of more mineral-rich sediment into the estuaries; and (ii) increasing sediment sulfidation. Sediment total organic carbon (TOC) : total sulfur (TS) and TS : Fe(II) ratios correlated to sediment loads because enhanced sedimentation increases burial, hence the importance of sulfate reduction in organic matter degradation. Curvilinear relationships were found between a weathering index and organic matter 13C in sediment, and sediment load. The rising phase of the curve (increasing weathering, lighter isotopic values) at low to intermediate loads relates to soil erosion, whereas regolith or bedrock erosion probably explains the declining phase of the curve (decreasing weathering, heavier isotopic values) at higher sediment loads. The pattern of change for water column total nutrients (nitrogen and phosphorus) with sediment loads is similar to that of the weathering index. Most water quality problems occur in association with soil erosion, and at sediment loads that are intermediate for the estuaries studied. Limited evidence is presented that flushing can moderate the impact of sediment loads upon the estuaries.

  • A detailed analysis of aquifer systems in the Broken Hill Managed Aquifer Recharge priority areas has clarified our understanding of key components of the aquifer systems. Of the priority areas examined in detail, the aquifers located in the Darling Floodplain are considered to have the greatest potential for developing Managed Aquifer Recharge (MAR) options and for hosting significant volumes of previously undefined fresh and brackish groundwaters with low levels of allocation, thereby assisting the larger strategic effort aimed at identifying significant water-saving measures for the Darling River system.

  • Petascale archives of Earth observations from space (EOS) have the potential to characterise water resources at continental scales. For this data to be useful, it needs to be organised, converted from individual scenes as acquired by multiple sensors, converted into ‘analysis ready data’ and made available through high performance computing platforms. Moreover, converting this data into insights requires integration of non-EOS datasets that can provide biophysical and climatic context for EOS. Digital Earth Australia has demonstrated its ability to link EOS to rainfall and stream gauge data to provide insight into surface water dynamics during the hydrological extremes of flood and drought. This information is supporting the characterisation of groundwater resources across Australia’s north and could potentially be used to gain an understanding of the vulnerability of transport infrastructure to floods in remote, sparsely gauged regions of northern and central Australia.

  • This project was conducted by Geoscience Australia in collaboration with the Water Science Branch of the Department of Water, Western Australia, to acquire baseline information supporting the condition assessment for Hardy Inlet. The project contributes to the Estuarine Resource Condition Indicators project funded by the Strategic Reserve of the National Action Plan for Salinity and Water Quality / National Heritage Trust and forms part of the Resource Condition Monitoring endorsed under the State (Western Australia) Natural Resource Management framework. Two surveys were undertaken in Hardy Inlet in September 2007 and April 2008 with the aim to develop an understanding of the historical environmental changes and current nutrient and sediment conditions for the purpose of developing sediment indicators to characterise estuary condition.

  • The AusHydro database provides a seamless surface hydrography layer for Australia at a nominal scale of 1:250,000. It consists of lines, points and polygons representing natural and man-made features such as water courses, lakes, dams and other water bodies. The natural water course layer consists of a linear network with a consistent topology of links and nodes that provide directional flow paths through the network for hydrological analysis. This network was used to produce the National 9 second Digital Elevation Model (DEM) of Australia (http://www.ga.gov.au/nmd/products/digidat/dem_9s.jsp). Surface Hydrology Dataset is an amalgamation of two primary datasets. The first is the hydrographic component of the GEODATA TOPO 250K Series 3 product released by Geoscience Australia in 2006 . The Series 3 dataset contains the following hydrographic features: canal lines, locks, rapid lines, spillways, waterfall points, bores, canal areas, flats, lakes, pondage areas, rapid areas, reservoirs, springs, watercourse areas, waterholes, water points, marine hazard areas, marine hazard points and foreshore flats.It also provides information on naming, hierarchy and perenniality. The dataset also contains Cultural and Transport features that may intersect with hydrography features. These include: Railway Tunnels, Rail Crossings, Railway Bridges, Road Tunnels, Road Bridges, Road Crossings, Water Pipelines. Refer to the GEODATA TOPO 250K Series 3 User Guide http://www.ga.gov.au/image_cache/GA8349.pdf for additonal information The second primary dataset is based on the GEODATA TOPO-250K Series 1 water course lines completed by Geoscience Australia in 1994, which has been supplemented by additional line work captured by the Australian National University during the production of the 9 second DEM to improve the representation of surface water flow. This natural watercourse dataset consists of directional flow paths and provides a direct link to the flow paths derived from the DEM. There are approximately 700,000 more line segments in this version of the data. AusHydro 1.0 uses the natural watercourse geometry from the ANU-enhanced Series 1 data, and the attributes (names, perenniality and hierarchy) associated with Series 3 to produce a fully attributed data set with topologically correct flow paths. The attributes from Series 3 were attached using spatial queries to identify common features between the 2 datasets. Additional semi-automated and manual editing was then undertaken to ensure consistent attribution along the entire network. WatercourseLines includes a unique identifier for each line segment (AusHydro-ID) which will be used to maintain the dataset, and to incorporate higher resolution datasets in the future. The AusHydro-ID will be linked to the ANUDEM-Derived (raster) streams through a common segment identifier, and ultimately to a set of National Catchments and Reporting Units (NCRU). Purpose Surface Hydrology Dataset is the reconciliation of the hydrological features in the two data sets to produce a single authoritative national stream network and water body data set suitable for hydrological analysis at national scales. It uses the natural watercourse geometry from the ANU-enhanced Series 1 data, and the attributes (names, perenniality and hierarchy) associated with Series 3 to produce a fully attributed data set with topologically correct flow paths.