From 1 - 10 / 369
  • The interpretation of two regional seismic reflection profiles and the construction of a balanced cross section through the southern Australian margin (Bight Basin) are designed to analyze the influence of the Australia-Antarctica continental breakup process on the kinematic evolution of the Cretaceous Ceduna delta system. The data shows that the structural architecture of this delta system consists of two stacked sub-delta systems. The lower White Pointer delta system (Late Albian-Santonian) is an unstable tectonic wedge, regionally detached seaward above Late Albian ductile shales. Sequential restorations suggest that the overall gravitational sliding behavior of the White Pointer delta wedge (~45 km of seaward extension, i.e., ~25%) is partially balanced by the tectonic denudation of the subcontinental mantle. We are able to estimate the horizontal stretching rate of the mantle exhumation between ~2 km Ma-1and 5 km Ma-1. The associated uplift of the distal part of the margin and associated flexural subsidence in the proximal part of the basin are partially responsible for the decrease of the gravitational sliding of the White Pointer delta system. Lithospheric failure occurs at ~84 Ma through the rapid exhumation of the mantle. The upper Hammerhead delta system (Late Santonian-Maastrichtian) forms a stable tectonic wedge developed during initial, slow seafloor spreading and sag basin evolution of the Australian side margin. Lateral variation of basin slope (related to the geometry of the underlying White Pointer delta wedge) is associated with distal raft tectonic structures sustained by high sedimentation rates. Finally, we propose a conceptual low-angle detachment fault model for the evolution of the Australian-Antarctica conjugate margins, in which the Antarctica margin corresponds to the upper plate and the Australian margin to the lower plate.

  • As part of initiatives by the Australian and Queensland Governments to support energy security and mineral exploration, a deep seismic reflection survey was conducted in 2007 to establish the architecture and geodynamic framework of north Queensland. With additional support from AuScope, nearly 1400 km of seismic data were acquired along four lines, extending from near Cloncurry in the west to almost the Queensland coast. Important results based on the interpretation of the deep seismic data include: (1) A major, west-dipping, Paleo-proterozoic (or older) crustal boundary, which we interpret as a suture, separates relatively homogenous, thick crust of the Mt Isa Province from thinner, two layered crust to the east. This boundary is also imaged by magnetotelluric data and 3D inversion of aeromagnetic and gravity data. (2) East of the Mt Isa Province the lower crust is highly reflective and has been subdivided into three mappable seismic provinces (Numil, Abingdon and Agwamin) which are not exposed at the surface. Nd model ages from granites sampled at the surface above the western Numil and central Abingdon Seismic Provinces have very similar Nd model ages, suggesting that both provinces may have had a very similar geological history. By contrast, granites sampled above the eastern Agwamin Seismic Province have much younger Nd model ages, implying a significantly younger component in the lower crust; we consider that the Agwamin Seismic Province contains a strong Grenvillean-age component.

  • Legacy product - no abstract available

  • The Georgina-Arunta deep seismic reflection line (09GA-GA1) has provided an image of the entire crust in this part of central Australia. At a first approximation, beneath the Neoproterozoic-Devonian sedimentary basins, the crust can be divided into four distinct regions, namely, the Aileron, Irindina and Davenport Provinces, and the Ooratippra Seismic Province. Each of these regions is separated from each other by major, crustal-scale faults. The observed crustal architecture has implications for geodynamic models for the evolution of the region, implying amalgamation of these crustal blocks in the Paleoproterozoic and major shortening and basin inversion in the Paleozoic.

  • Many aspects of the evolution and overall architecture of the Australian southern rifted margin are consistent with current models for the development of non-volcanic rifted margins. However, when examined in detail, several key features of the southern margin provide useful points of comparison with the Atlantic and Alpine Tethyan margins from which these models derive. Extensive petroleum industry and government seismic and geophysical data sets have enabled detailed mapping of the basins of the southern margin and an improved understanding of its tectonostratigraphic evolution. Australia's southern rifted continental margin extends for over 4000 km, from the structurally complex margin south of the Naturaliste Plateau in the west, to the transform plate boundary adjacent to the South Tasman Rise in the east. The margin contains a series of Middle Jurassic to Cenozoic basins-the Bight, Otway, Sorell, Gippsland and Bass basins, and smaller depocentres on the South Tasman Rise (STR). These basins, and the architecture of the margin, evolved through repeated episodes of extension and thermal subsidence leading up to, and following, the commencement of sea-floor spreading between Australia and Antarctica. Break-up took place diachronously along the margin, commencing in the west at ~83 Ma and concluding in the east at ~ 34 Ma. In general, break-up was not accompanied by significant magmatism and the margin is classified as 'non-volcanic' (or magma-poor). Initial NW-SE ultra-slow to slow seafloor spreading (latest Santonian-Early Eocene), followed by N-S directed fast spreading (Middle Eocene-present), resulted in: (1) an E-W oriented obliquely- to normally-rifted marginal segment extending from the westernmost Bight Basin to the central Otway Basin; (2) an approximately N-S oriented transform continental margin in the east (western Tasmania-STR), and (3) a transitional zone between those end-members (southern Otway-Sorell basins).

  • As part of initiatives by the Australian and Queensland Governments, four new seismic reflection lines and three corresponding magnetotelluric lines were acquired in 2007 over the Mt Isa, Georgetown and Charters Towers regions. These data, combined with existing multidisciplinary data, have provided new insights into the 3D architecture, geodynamics and economic potential of the North Queensland region.