rare earth elements
Type of resources
Keywords
Publication year
Topics
-
<div>The production of rare earth elements (REEs) is critical to the global transition to a low carbon economy. Carbonatites represent a significant source of REEs, both domestically within Australia, as well as globally. Given their strategic importance for the Australian economy, a national mineral potential assessment has been undertaken as part of the Exploring for the Future program at Geoscience Australia to evaluate the potential for carbonatite-related REE (CREE) mineral systems. Rather than aiming to identify individual carbonatites and/or CREE deposits, the focus of the mineral potential assessment is to delineate prospective belts or districts within Australia that indicate the presence of favourable criteria, particularly in terms of lithospheric architecture, that may lead to the formation of a CREE mineral system.</div><div><br></div><div>This study demonstrates how national-scale multidisciplinary precompetitive geoscience datasets can be integrated using a hybrid methodology that incorporates robust statistical analysis with mineral systems expertise to predictively map areas that have a higher geological potential for the formation of CREE mineral systems and effectively reduce the exploration search space. Statistical evaluation of the relationship between different mappable criteria that represent spatial proxies for mineral system processes and known carbonatites and CREE deposits has been undertaken to test previously published hypotheses on how to target CREE mineral systems at a broad-scale. The results confirm the relevance of most criteria in the Australian context, while several new criteria such as distance to large igneous province margins and distance to magnetic worms have also been shown to have a strong correlation with known carbonatites and CREE deposits. Using a hybrid knowledge- and data-driven mineral potential mapping approach, the mineral potential map predicts the location of known carbonatite and CREE deposits, while also demonstrating additional areas of high prospectivity in regions with no previously identified carbonatites or CREE mineralisation.</div> Presented at the AusIMM Critical Minerals Conference 2023.
-
<div>Maps showing the potential for carbonatite-related rare earth element (REE) mineral systems in Australia. Each of the mineral potential maps is a synthesis of three or four component layers. Model 1 integrates three components: sources of metals, energy drivers, and lithospheric architecture. Model 2 integrates four components: sources of metals, energy drivers, lithospheric architecture, and ore deposition. Both models use a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential map for Model 2 that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. An assessment criteria table is provided and contains information on the map creation.</div>
-
Herein the results of a global compilation of rare earth element (REE) deposits (available in Excel format) are presented. The deposits were selected as they have substantial endowment (i.e., pre-mining mineral resource) and/or detailed geological information is available. For each deposit (or, in some cases, district) the dataset includes information on: 1. Name (including synonyms) and location; 2. Tectonic province that hosts the deposit; 3. Type(s) and age(s) of mineralising events that produced/affected the deposit (including metadata on ages); 4. The metal/mineral endowment of the deposit; 5. Host rocks to the deposit; 6. Spatially and/or temporally associated magmatic rocks; 7. Spatially and temporally associated alteration assemblages (mostly proximal, but, in some cases, regional assemblages); 8. Rare earth element mineralogy; 9. The Fe-S-O minerals present in the deposit and relative abundances where known; 10. Sulfate minerals present; 11. Peak metamorphic grade; 12. Data sources; and 13. Comments. This document presents more detailed descriptions of the metadata presented in the compilation. The dataset is presented in Appendix A.
-
The Australian Resource Reviews are periodic national assessments of individual mineral commodities. The reviews include evaluations of short-term and long-term trends for each mineral resource, world rankings, production data, significant exploration results and an overview of mining industry developments.
-
The Australian Resource Reviews are periodic national assessments of individual mineral commodities. The reviews include evaluations of short-term and long-term trends for each mineral resource, world rankings, production data, significant exploration results and an overview of mining industry developments.
-
<div>The production of rare earth elements is critical for the transition to a low carbon economy. Carbonatites (>50% carbonate minerals) are one of the most significant sources of rare earth elements (REEs), both domestically within Australia, as well as globally. Given the strategic importance of critical minerals, including REEs, for the Australian national economy, a mineral potential assessment has been undertaken to evaluate the prospectivity for carbonatite-related REE (CREE) mineralisation in Australia. CREE deposits form as the result of lithospheric- to deposit-scale processes that are spatially and temporally coincident.</div><div><br></div><div>Building on previous research into the formation of carbonatites and their related REE mineralisation, a mineral system model has been developed that incorporates four components: (1) source of metals, fluids, and ligands, (2) energy sources and fluid flow drivers, (3) fluid flow pathways and lithospheric architecture, and (4) ore deposition. This study demonstrates how national-scale datasets and a mineral systems-based approach can be used to map the mineral potential for CREE mineral systems in Australia.</div><div><br></div><div>Using statistical analysis to guide the feature engineering and map weightings, a weighted index overlay method has been used to generate national-scale mineral potential maps that reduce the exploration search space for CREE mineral systems by up to ∼90%. In addition to highlighting regions with known carbonatites and CREE mineralisation, the mineral potential assessment also indicates high potential in parts of Australia that have no previously identified carbonatites or CREE deposits.</div><div><br></div><div><b>Citation: </b>Ford, A., Huston, D., Cloutier, J., Doublier, M., Schofield, A., Cheng, Y., and Beyer, E., 2023. A national-scale mineral potential assessment for carbonatite-related rare earth element mineral systems in Australia, <i>Ore Geology Reviews</i>, V. 161, 105658. https://doi.org/10.1016/j.oregeorev.2023.105658</div>