energy infrastructure
Type of resources
Keywords
Publication year
Scale
Topics
-
High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topography or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, el.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited field data and industry expertise.
-
Presented to the Association of Mining and Exploration Companies (AMEC), Perth, March 2007
-
The Paterson airborne electromagnetic (AEM) survey is Australia's first regional AEM survey, flown between September 2007 and August 2008 under the auspices of the Australian Government's Onshore Energy Security Program (OESP). The survey was flown over the Archean eastern Pilbara, the Palaeoproterozoic Rudall Complex and the Neoproterozoic Yeneena Basin (both of which comprise the Paterson Orogen) and on-lapping sediments of the Neoproterozoic-Paleozoic Officer Basin and Palaeozoic-Mesozoic Canning Basin. The survey was flown at line spacings of 6, 2 and 1 km and 200 m for a total area of 45,330 km2 targeting known mineral deposits and other highly prospective rocks under cover. The survey was designed to provide pre-competitive data to reduce exploration risk primarily for uranium but also for other metals as well as groundwater resources for local indigenous communities and mineral exploration.
-
This report has been prepared at the request of Engineers of the Department of Works and Housing. The writer spent a day with Mr. Crotty examining the site, and another day alone studying general geological conditions relevant to the proposed scheme. The visit and its findings are outlined in this report.
-
A newsletter to Project Stakeholders to inform of progress and future events
-
The article provides an annula update on Australia's energy scenarion, focussing on offshore oil and gas exploration and production and advertsing the current open acreage release round.
-
Summary of last 12 months activity in Acreage Release Area.
-
The purpose of The Energy Infrastructure Australia Map, is to provide an overview of the location of Energy Infrastructure facilities in Australia.
-
High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topoloty or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, et.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited filed data and industry expertise. Methods: This paper presents a noval methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology explicitly addresses the highly direction-sensitive nature of tower/conductor vulnerability which varies greatly. It has involved the development of a vulnnerability methodology and heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results. This has been achieved through consultation with industry...
-
Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, Geoscience Australia, Canberra.