From 1 - 10 / 33
  • Elevation data and products such as Digital Elevation Models derived from these data comprise an essential layer within the National Spatial Data Infrastructure. Historically the creation of these datasets has been the domain of National and State mapping agencies. However, in recent years the rapid development of survey technologies and industry capability, the need for high resolution elevation data to meet a range of purposes, and the nature of government funding arrangements has resulted in significant project-based investment.

  • The 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) derived Digital Surface Model (DSM) Version 1.0 was derived from resampling the 1 arc second (~30m) gridded DSM (ANZCW0703013336) that represents ground surface topography as well as features above the ground such as vegetation and man-made structures. The 1 second DSM was derived from the SRTM data acquired in February 2000, supported by the GEODATA 9 second DEM in void areas and the SRTM Water Body Data. Stripes and voids have been removed from the 1 second SRTM data to provide an enhanced and complete DSM for Australia and near-shore islands. A full description of the methods is in progress (Read et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution. Further information can be found in the User Guide. The 1 second DSM forms the source for the 1 second DEM with vegetation offsets removed (ANZCW0703013355) and the smoothed version (ANZCW0703014016). All 1 second products resampled to 3 seconds are available (DSM; ANZCW0703014216, DEM; ANZCW0703014182, DEM-S; ANZCW0703014217). <strong>Please note that all 1 second products are available for GOVERNMENT USERS ONLY.</strong>

  • The Busselton 2008 LiDAR data was captured over the Busselton region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • Removing the topographic effect from satellite images is a very important step in order to obtain comparable surface reflectance in mountainous areas and to use the images for different purposes on the same spectral base. The most common method of normalising for the topographic effect is by using a Digital Surface Model (DSM) and / or a Digital Elevation Model (DEM). However, the accuracy of the correction depends on the accuracy, scale and spatial resolution of DSM data as well as the co-registration between the DSM and satellite images. A physics based BRDF and atmospheric correction model in conjunction with a 1-second SRTM (Shuttle Radar Topographic Mission) derived DSM product released by Geoscience Australia in 2010 were used to conduct the analysis reported in this paper. The results show that artefacts in the DSM data can cause significant local errors in the correction. For some areas, false shadow and over corrected surface reflectance factors have been observed. In other areas, the algorithm is unable to detect shadow or retrieve an accurate surface reflectance factor in the slopes away from the sun. The accuracy of co-registration between satellite images and DSM data is crucial for effective topographic correction. A mis-registration error of one or two pixels can lead to large error of retrieved surface reflectance factors in the gully and ridge areas (retrieved reflectance factors can change from 0.3 to 0.5 or more). Therefore, accurate registrations for both satellite images and DSM data are necessary to ensure the accuracy of the correction. Using low resolution DSM data in conjunction with high resolution satellite images can fail to correct some significant terrain effects. A DSM resolution appropriate to the scale of the resolution of satellite image is needed for the best results.

  • National Elevation Data Audit is a report outlining all elevation data available across all Australian jurisdictions which was identified by the Intergovernment Committee on Surveying and Mapping's (ICSM) Permanent Committee on Topographic Information (PCTI).

  • A test site for airborne gravity (AG) systems has been established at Kauring, approximately 100 km east of Perth, Western Australia. The site was chosen using a range of criteria that included being within 200 km of Jandakot Airport in Perth where most of the airborne systems would be based at one time or another when operating in Australia, being free of low level flight restrictions, having minimal human infrastructure in the central 20 by 20 km area, and the presence of gentle to rolling terrain rather than deeply incised topography or an extensive flat plain with very low relief. In anticipation of catering for airborne gravity gradiometer (AGG) systems, the site was required to have a gravity gradient feature with clear response in the wavelength range of 100 m to 2 km in a 5 by 5 km core region. In addition to catering for AGG systems, the site may also be used in the future to demonstrate and compare various airborne magnetic systems (TMI, vector, and gradient tensor systems) and digital terrain mapping systems.

  • An audit of high resolution elevation data capture in relation to densely populated areas was completed to: provide an overview of the status of high resolution elevation data acquisition around the coastal zone; and highlight areas for potential acquisition or further processing based on priorities identified through consultation with Commonwealth and State jurisdictions.

  • The Lapstone Structural Complex (LSC) comprises a series of north-trending faults and monoclinal flexures forming the eastern margin of the Blue Mountains Plateau, ~50 km west of the Sydney CBD. The LSC is considered a potential source of large earthquakes, however its evolution, and in particular its tectonic history is not well constrained. The LSC is bounded to the west by the Kurrajong Fault System (KFS), a series of <i>en echelon </i>reverse faults downthrown to the west. Streams crossing the LSC oversteepen by about 2-5 times over these faults. This study aims, through longitudinal profile analysis of 18 streams crossing the LSC coupled with field observation, to determine whether the oversteepening can be attributed to a lithological change at the faults, or tectonically-induced disequilibrium. Two approaches are used. Firstly, plots of log slope versus log distance (DS plots) are produced for each of the streams. As a result of noise in the topographic data, these results are inconclusive in demonstrating either situation. Secondly, an area-slope relationship, defined by <i>A<sup>0.4</sup>S</i> (where A = area and S = slope), is plotted against downstream distance. This factor is derived from the stream incision law, <i>dz/dt </i>= <i>KA<sup>m</sup>S<sup>n</sup></i>, where <i>K</i> is assumed to be constant, and <i>m</i> and<i> n</i> are positive constants relating to erosional processes, and basin hydrologic and geometric factors. The analysis shows that in all but two streams, values for <i>A<sup>0.4</sup>S</i> are at a maximum over the LSC. Peak <i>A<sup>0.4</sup>S</i> values of about 0.2 are estimated to be equivalent to vertical incision rates of about 70 m/Ma. <i>A<sup>0.4</sup>S</i> varies with lithology; however the lithological effect is demonstrated to be of similar magnitude or smaller than the apparent structural control exerted by the LSC. All streams with catchment areas less than 100 km<sup>2</sup> have developed swamps upstream of faults on the LSC. Sediment accumulated in these swamps is generally 0.5-4 m thick, but reaches 14 m in Burralow Swamp. In Blue Gum Creek and Burralow Swamps, the sedimentary sequence includes an organic clay layer indicative of low-energy depositional conditions. Previous radiocarbon dating and pollen analysis suggests the sediment is of Pleistocene age. The elevation of the clay layer is similar to that of bedrock downstream of the faults, consistent with damming related to from tectonically induced uplift.

  • The 9 second DEM derived streams are a a fully connected and directed stream network produced in rastor and vector fomats by Australian National University. This product is the raster format, for the the vector product please refer to the Bureau of Meterology's Geofabric Website (http://www.bom.gov.au/water/geofabric/index.shtml). It is built upon the representation of surface drainage patterns provided by the GEODATA national 9 second Digital Elevation Model (DEM) Version 3 (ANU Fenner School of Environment and Society and Geoscience Australia, 2008).

  • The 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) version 1.0 was derived from resampling the 1 arc second (~30m) gridded DEM (ANZCW0703013355). The DEM represents ground surface topography, and excludes vegetation features. The dataset was derived from the 1 second Digital Surface Model (DSM; ANZCW0703013336) by automatically removing vegetation offsets identified using several vegetation maps and directly from the DSM. The 1 second product provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects are identified in the quality assessment layers distributed with the data and described in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010). A full description of the methods is in progress (Read et al., in prep; Gallant et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution.