From 1 - 10 / 72
  • <div>The Trusted Environmental and Geological Information (TEGI) Program (2021-2023) was a multi-disciplinary program that brought together the geology, energy resources, groundwater, carbon and hydrogen storage, mineral occurrences, surface water and ecology for four Australian basin regions. This talk covers how the team leveraged their varied scientific expertise to deliver integrated scientific outcomes for the North Bowen, Galilee, Cooper and Adavale basin regions. This talk highlights the approach and importance of meaningful engagement with those that live in, work in, rely on and care for the regions. The story of the TEGI program outlines how a committed team, collaborating across Australia’s leading scientific organisations, delivered genuine impact during a time of political change.</div><div><br></div>

  • <div>Australia's vast terrains harbour small seismic events that often go unnoticed due to sparse station coverage and ambient noise interference. Innovative data processing techniques hold the key to revealing signals present in the seismic records that are suppressed by noise. In this presentation, I will talk about how seismic array techniques play an important role in our ability to detect and understand these subtle seismic signals, and how we employ these methods to bridge the gaps in our seismic coverage. This has applications to earthquake monitoring, hazard assessment, and environmental insights.</div>

  • <div>The Australian wide airborne electromagnetic programme AusAEM stands as the largest survey of its kind aiming to cover the Australian continent at approximately 20 km line-spacing. It is transforming resource exploration, unveiling potential minerals and groundwater.&nbsp;</div><div><br></div><div>The open-access nature of AusAEM data and the modelling codes developed around it encourages collaboration between governments, industry, and academia, fostering a community focused on advancing geoscientific research and exploration.</div><div><br></div><div>Overall, the AusAEM program is an asset that can drive economic growth, support sustainable resource management, and enhance scientific understanding of Australia’s geological landscape.</div><div><br></div>

  • This talk presents an overview of flood vulnerability research in the Community Safety Branch at Geoscience Australia. It covers work looking at the tangible and intangible costs of floods. Vulnerability models for residential, commercial and industrial buildings are described. The cost-effectiveness of structural mitigation options have been evaluated in recent work undertaken in collaboration with Bushfire and Natural Hazards CRC. The presentation highlights the utility of this research in reducing flood risk in Australian communities.

  • For the first time in Australia, ground gravity, airborne gravity/gravity gradiometry, and satellite gravity observations have been combined to produce a series of National Gravity Grids covering an area more than twice the size of Australia. This involved the combination of observations made on the land, in the air, and by satellite - more than 1,800 ground gravity surveys, 14 airborne gravity and gravity gradiometry surveys, and satellite gravity observations. Underpinning this accomplishment is the Australian Fundamental Gravity Network - a series of gravity benchmarks that allow the joining of gravity data into a seamless whole. This presentation will discuss both the utility of the network and how it feeds into the production of the grids, plus the process of creating the national scale grids using such varied sources of gravity data.

  • Australia’s marine jurisdiction covers over 10 million square kilometres, and we estimate that only 25% of its seafloor has been mapped to the adequate resolution required to support the sustainable development and management of our marine estate. Considering that seabed mapping underpins most aspects of ocean sciences and engineering, and contributes strongly to Australia’s economic, environmental and social values, it is critical that we address this fundamental knowledge gap. AusSeabed was founded three years ago—a cross sector collaborative national program aimed at coordinating ocean mapping efforts to maximise benefits to stakeholders. AusSeabed is working to address many challenges surrounding efficient data acquisition, quality assurance, processing and delivery to various end-users with an aim to eliminate duplication of effort and improve data quality and consistency across sectors. A fundamental component of the AusSeabed program is the design and development of a federated, cloud-based, open-source platform to address the whole supply chain from data acquisition to delivery. Importantly, this work is enabling seamless collation of seabed mapping datasets and their integration with other marine data types from a variety of previously isolated and inaccessible holdings. Strong community commitment and a powerful resonance with stakeholders have driven rapid program growth and are a testament to the value of deliberate and effective collaboration for national benefit. This presentation will give an overview of AusSeabed’s current progress, highlights and forward plan.

  • Characterising earthquake hazard in low seismicity regions is challenging, due to both the inherent lack of data and an incomplete theoretical understanding of the controls on earthquake occurrence away from plate boundaries. In the plate boundary paradigm, elastic rebound theory predicts that cycles of strain accumulation and release will result in regular, or quasiperiodic, recurrence of large earthquakes on individual faults. Analysis of a global compilation of long-term earthquake records shows that this largely holds in plate boundary regions, but begins to break down in intraplate and other low seismicity regions, where more irregular, or aperiodic, earthquake recurrence is observed. In this talk the Otago region of southern New Zealand is used as a case study of a low seismicity region with evidence for aperiodic earthquake recurrence. New paleoearthquake and slip rate data are used to extend the record of faulting back more than 100 ka on two faults, the Hyde and Dunstan faults. These data allow the variability of earthquake rates on these faults to be characterised, with novel Bayesian methods developed to forecast the probability of future earthquakes. Finally, the talk discusses the potential for application of these methods in the Australian context.

  • Earth is the only terrestrial planet in the solar system with continents, and hence understanding their evolution is vital to unravelling what makes Earth special – our liquid oceans, oxygenated atmosphere, and ultimately, life. The continental crust is also host to all our mineable mineral deposits, and hence it has played a key role in the establishment of human civilisation. This link between the crust and human development will be even more prominent through the need for critical metals, as our society transitions toward green technologies. In this talk, we will discuss the link between the time-space evolution of the continental crust and the location of major mineral systems. By using isotopic data from micron-scale zircon crystals, we can map the crustal architectures that control the large-scale localisation of numerous mineral provinces. This work demonstrates the intimate link between the evolution of the continents, the understanding of mineral systems, and ultimately our continued evolution as an industrialised society.

  • Exploring for the Future is an Australian Government program led by Geoscience Australia that aims to drive investment in the resources and agricultural sectors by providing industry and land and water managers with pre-competitive data about potential mineral, energy and groundwater resources. The Australian Government invested $100 million in the first phase of the Exploring for the Future program in 2016. In June 2020, the Australian Government announced a $125 million extension and expansion of the program, bringing their total investment to $225 million to date. Exploring for the Future is building on Geoscience Australia's deep domain knowledge to generate new science and challenge the frontiers of resource exploration. Eight new projects will include the southern half of the continent, with a focus on two potentially resource-rich corridors that stretch across the country. Unlocking these new resource corridors will provide ongoing economic and employment growth across a wide range of regional areas.

  • Sustainable development and the transition to a clean-energy economy drives ever-increasing demand for base metals, substantially outstripping the discovery rate of new deposits and necessitating dramatic improvements in exploration success. This talk presents the tale of the surprising discovery that 85% of sediment-hosted base metals, including all giant deposits, in Australia and around the world, occur above the transition between thick and thin portions of tectonic plates. It is a story of integrated geoscience, which builds on decades of research in geology, geochemistry and geophysics through a global partnership, which has transformed the search for new exploration frontiers.