From 1 - 10 / 626
  • During the Quaternary, the Mac. Robertson shelf of East Antarctica was deeply eroded by glaciers and currents exposing the underlying basement, resulting in a scalped shelf.

  • The interpretation of two regional seismic reflection profiles and the construction of a balanced cross section through the southern Australian margin (Bight Basin) are designed to analyze the influence of the Australia-Antarctica continental breakup process on the kinematic evolution of the Cretaceous Ceduna delta system. The data shows that the structural architecture of this delta system consists of two stacked sub-delta systems. The lower White Pointer delta system (Late Albian-Santonian) is an unstable tectonic wedge, regionally detached seaward above Late Albian ductile shales. Sequential restorations suggest that the overall gravitational sliding behavior of the White Pointer delta wedge (~45 km of seaward extension, i.e., ~25%) is partially balanced by the tectonic denudation of the subcontinental mantle. We are able to estimate the horizontal stretching rate of the mantle exhumation between ~2 km Ma-1and 5 km Ma-1. The associated uplift of the distal part of the margin and associated flexural subsidence in the proximal part of the basin are partially responsible for the decrease of the gravitational sliding of the White Pointer delta system. Lithospheric failure occurs at ~84 Ma through the rapid exhumation of the mantle. The upper Hammerhead delta system (Late Santonian-Maastrichtian) forms a stable tectonic wedge developed during initial, slow seafloor spreading and sag basin evolution of the Australian side margin. Lateral variation of basin slope (related to the geometry of the underlying White Pointer delta wedge) is associated with distal raft tectonic structures sustained by high sedimentation rates. Finally, we propose a conceptual low-angle detachment fault model for the evolution of the Australian-Antarctica conjugate margins, in which the Antarctica margin corresponds to the upper plate and the Australian margin to the lower plate.

  • Two sediment cores collected from beneath the Amery Ice Shelf, East Antarctica describe the physical sedimentation patterns beneath an existing major embayed ice shelf. Core AM01b was collected from a site of basal freezing, contrasting with core AM02, collected from a site of basal melting. Both cores comprise Holocene siliceous muddy ooze (SMO), however, AM01b also recovered interbedded siliciclastic mud, sand and gravel with inclined bedding in its lower 27 cm. This interval indicates an episode of variable but strong current activity before SMO sedimentation became dominant. 14C ages corrected for old surface ages are consistent with previous dating of marine sediments in Prydz Bay. However, the basal age of AM01b of 28250 ± 230 14C yr bp probably results from greater contamination by recycled organic matter. Lithology, 14C surface ages, absolute diatom abundance, and the diatom assemblage are used as indicators of sediment transport pathways beneath the ice shelf. The transport pathways suggested from these indicators do not correspond to previous models of the basal melt/freeze pattern. This indicates that the overturning baroclinic circulation beneath the Amery Ice Shelf (near-bed inflow-surface outflow) is a more important influence on basal melt/freeze and sediment distributions than the barotropic circulation that produces inflow in the east and outflow in the west of the ice front. Localized topographic (ice draft and bed elevation) variations are likely to play a dominant role in the resulting sub-ice shelf melt and sediment distribution.

  • In ecology, a common form of statistical analysis relates a biological variable to variables that delineate the physical environment, typically by fitting a regression model or one of its extensions. Unfortunately, the biological data and the physical data are frequently obtained from eparate sources of data. In such cases there is no guarantee that the biological and physical data are co-located and the regression model cannot be used. A common and pragmatic solution is to predict the physical variables at the locations of the biological variables and then to use the predictions as if they were observations.We show that this procedure can cause potentially misleading inferences and we use generalized linear models as an example. We propose a Berkson error model which overcomes the limitations. The differences between using predicted covariates and the Berkson error model are illustrated by using data from the marine environment, and a simulation study based on these data.

  • High quality refraction and wide-angle reflection seismic data recorded by ocean-bottom seismographs (OBSs) deployed by the Australian Geological Survey Organisation along the 700 km long transect in the Carnarvon Basin effectively supplement results obtained by means of the conventional reflection technology. Velocity information can now be derived from both CDP (nearvertical reflection) and OBS (refraction/wide-angle reflection) data. Generally, CDP-derived average velocities are lower than OBS-derived velocities and this deviation increases with depth: from ~0.1 km/s at 8 s two way time (TWT) to 0.8-1.6 km/s at 16 s TWT. If the CDP-derived velocities are used to depth convert reflection data, then depth to these TWTs would be underestimated by 0.4 to 6.4-12.8 km respectively. Some local anomalies (at ~6s TWT CDP-derived velocities may be more than 0.1 km/s higher than the OBS-derived velocities) distort this general trend. These would result in ~0.3 km local overestimates of the depth equivalent of 6s TWT. Co-analysis of the interval velocity field reconstructed from the travel time-based interpretation of the OBS data and the conventional reflection image of the crust in some cases shows their poor correlation.

  • A nationally-consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1° grid covering 110'156° longitude and 7'46° latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3,000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25-35 kW m-1 (90th percentile of 60-78 kW m-1), delivering 800-1100 GJ m-1 of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10-20 kW m-1; 90th percentile: 20-30 kW m-1), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m-1. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally-consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry.

  • In most circumstances the conventional radioelement ratio method is sufficient for the enhancement of the differences between radioelement concentrations across map areas. However, there are areas where the range of radioelement concentration values are such that the ratio image is dominated by one or other of the radioelements. In this paper we demonstrate that, in some areas, the use of these ratios can be enhanced through suitable normalisation of the radioelement data prior to the calculation of ratios.

  • Australia's nickel sulfide industry has had a fluctuating history since the discovery in 1966 of massive sulfides at Kambalda in the Eastern Goldfields of Western Australia. Periods of buoyant nickel prices and high demand, speculative exploration, and frenetic investment (the 'nickel boom' years) have been interspersed by protracted periods of relatively depressed metal prices, exploration inactivity, and low discovery rates. Despite this unpredictable evolution, the industry has had a significant impact on the world nickel scene with Australia having a global resource of nickel metal from sulfide ores of not, vert, similar 12.9 Mt, five world-class deposits (> 1 Mt contained Ni), and a production status of number three after Russia and Canada. More than 90% of the nation's known global resources of nickel metal from sulfide sources were discovered during the relative short period of 1966 to 1973. Australia's nickel sulfide deposits are associated with ultramafic and/or mafic igneous rocks in three major geotectonic settings: (1) Archean komatiites emplaced in rift zones of granite-greenstone belts; (2) Precambrian tholeiitic mafic-ultramafic intrusions emplaced in rift zones of Archean cratons and Proterozoic orogens; and (3) hydrothermal-remobilized deposits of various ages and settings. The komatiitic association is economically by far the most important, accounting for more than 95% of the nation's identified nickel sulfide resources. The ages of Australian komatiitic- and tholeiitic-hosted deposits generally correlate with three major global-scale nickel-metallogenic events at not, vert, similar 3000 Ma, not, vert, similar 2700 Ma, and not, vert, similar 1900 Ma. These events are interpreted to correspond to periods of juvenile crustal growth and the development of large volumes of primitive komatiitic and tholeiitic magmas caused by large-scale mantle overturn and mantle plume activities. There is considerable potential for the further discovery of komatiite-hosted deposits in Archean granite-greenstone terranes including both large, and smaller high-grade (5 to 9% Ni) deposits, that may be enriched in PGEs (2 to 5 g/t), especially where the host ultramafic sequences are poorly exposed. Analysis of the major komatiite provinces of the world reveals that fertile komatiitic sequences are generally of late Archean (not, vert, similar 2700 Ma) or Paleoproterozoic (not, vert, similar 1900 Ma) age, have dominantly Al-undepleted (Al2O3/TiO2 = 15 to 25) chemical affinities, and often occur with sulfur-bearing country rocks in dynamic high-magma-flux environments, such as compound sheet flows with internal pathways facies (Kambalda-type) or dunitic compound sheet flow facies (Mt Keith-type). Most Precambrian provinces in Australia, particularly the Proterozoic orogenic belts, contain an abundance of sulfur-saturated tholeiitic mafic ± ultramafic intrusions that have not been fully investigated for their potential to host basal Ni-Cu sulfides (Voisey's Bay-type mineralization). The major exploration challenges for finding these deposits are to determine the pre-deformational geometries and younging directions of the intrusions, and to locate structural depressions in the basal contacts and feeder conduits under cover. Stratabound PGE-Ni-Cu ± Cr deposits hosted by large Archean-Proterozoic layered mafic-ultramafic intrusions (Munni Munni, Panton) of tholeiitic affinity have comparable global nickel resources to many komatiite deposits, but low-grades (< 0.2% Ni). There are also hydrothermal nickel sulfide deposits, including the unusual Avebury deposit in western Tasmania, and some potential for 'Noril'sk-type' Ni-Cu-PGE deposits associated with major flood basaltic provinces in western and northern Australia.

  • We present a probabilistic tectonic hazard analysis of a site in the Otway Basin,Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking and associated fault displacements from natural tectonic processes that could adversely impact the storage process at the site. Three datasets are used to quantify the tectonic hazards at the site: (1) active faults; (2) historical seismicity, and; (3) GPS surface velocities. Our analysis of GPS data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a GPS-based source model for this Otway Basin model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters, and in the ground motion prediction. A new feature for seismic hazard modelling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in the Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. The annual probability for tectonic displacements of greater than or equal to 1m at the site is even lower, in the vicinity of 10-8-10-9/yr. The low hazard is consistent with the intraplate tectonic setting of the region, and unlikely to pose a significant hazard for CO2 containment and infrastructure.

  • Removing the topographic effect from satellite images is a very important step in order to obtain comparable surface reflectance in mountainous areas and to use the images for different purposes on the same spectral base. The most common method of normalising for the topographic effect is by using a Digital Surface Model (DSM) and / or a Digital Elevation Model (DEM). However, the accuracy of the correction depends on the accuracy, scale and spatial resolution of DSM data as well as the co-registration between the DSM and satellite images. A physics based BRDF and atmospheric correction model in conjunction with a 1-second SRTM (Shuttle Radar Topographic Mission) derived DSM product released by Geoscience Australia in 2010 were used to conduct the analysis reported in this paper. The results show that artefacts in the DSM data can cause significant local errors in the correction. For some areas, false shadow and over corrected surface reflectance factors have been observed. In other areas, the algorithm is unable to detect shadow or retrieve an accurate surface reflectance factor in the slopes away from the sun. The accuracy of co-registration between satellite images and DSM data is crucial for effective topographic correction. A mis-registration error of one or two pixels can lead to large error of retrieved surface reflectance factors in the gully and ridge areas (retrieved reflectance factors can change from 0.3 to 0.5 or more). Therefore, accurate registrations for both satellite images and DSM data are necessary to ensure the accuracy of the correction. Using low resolution DSM data in conjunction with high resolution satellite images can fail to correct some significant terrain effects. A DSM resolution appropriate to the scale of the resolution of satellite image is needed for the best results.