From 1 - 10 / 46
  • This Gippsland Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Gippsland Basin is an asymmetrical east-trending rift structure that originated during rifting in the Late Jurassic to Early Cretaceous, as Australia and Antarctica began to separate. Over time, it developed into a continental passive margin basin, with sedimentation continuing to the present day. The basin is characterized by four main phases of tectonic evolution, interspersed with eustatic sea-level variations: initial rifting and extension, mid-Cretaceous contraction, renewed extension, and cessation of rifting in the middle Eocene. The basin's geological structures consist of mainly east to north-east trending features, with the west dominated by north-east structures due to the influence of basement trends. Major fault systems are prominent, compartmentalizing the basin into platforms and depressions separated by bedrock highs. The basin's complex stratigraphic succession reveals fluvial, deltaic, marginal marine, and open marine depositional environments. The sedimentary sequence includes terrigenous siliciclastic sediments from the Upper Cretaceous to Eocene, followed by post-rift sands, clays, coals, and limestones/marls of Oligocene to Holocene age. The Gippsland Basin's sediments are subdivided into four main stratigraphic groups: the Strzelecki, Latrobe, Seaspray, and Sale groups. The Strzelecki Group, dating from the Late Jurassic to Early Cretaceous, consists of non-marine sedimentary rocks deposited in fluvial and lacustrine environments. The Latrobe Group, from Late Cretaceous to early Oligocene, contains siliciclastic sediments deposited in various non-marine to marginal marine settings, showing significant lateral lithofacies variations. The Seaspray Group, dating from Oligocene to Pliocene, formed during a post-rift phase, characterized by marine limestone and marl units and continental clastic sediments. Lastly, the Sale Group consists of Miocene-to-Recent continental clastic sediments forming a thin veneer over the onshore portion of the basin. The Gippsland Basin also contains several basaltic lava fields, with two notable volcanic units—the Thorpdale Volcanics and Carrajung Volcanics—part of the Older Volcanics in Victoria. Overall, the Gippsland Basin's geological history and diverse sedimentary deposits make it a significant area for various geological and geophysical studies, including its hydrocarbon resources concentrated in offshore Latrobe Group reservoirs.

  • This Southern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Crustal elements are crustal-scale geological regions primarily based on composite geophysical domains, each of which shows a distinctive pattern of magnetic and gravity anomalies. These elements generally relate to the basement, rather than the sedimentary basins. The South Australian Element comprises the Archean-Mesoproterozoic Gawler Craton and Paleo-Mesoproterozoic Curnamona Province, formed over billions of years through sedimentation, volcanism, magmatism, and metamorphism. The region experienced multiple continental-continent collisions, leading to the formation and breakup of supercontinents like Nuna and Rodinia, along with periods of extensional tectonism. Around 1,400 Ma, both the Gawler Craton and Curnamona Province were cratonised, and during the building of the Rodinia supercontinent (1,300-700 Ma), the present configuration of the region emerged. The area between the Gawler and Curnamona provinces contains Neoproterozoic to Holocene cover, including the Adelaide Superbasin, with the Barossa Complex as its basement, believed to be part of the Kimban Orogen. The breakup of Rodinia in the Neoproterozoic (830-600 Ma) resulted in mafic volcanism and extensional episodes, leading to the formation of the Adelaide Superbasin, characterized by marine rift and sag basins flanking the Gawler Craton and Curnamona Province. During the Mesozoic and Cenozoic, some tectonic structures were rejuvenated, while sedimentary cover obscured much of the now flatter terrain. Metamorphic facies in the region vary, with the Gawler and Curnamona provinces reaching granulite facies, while the Adelaide Superbasin achieved the amphibolite facies. The Gawler Craton contains rocks dating back to approximately 3,150 Ma, while the Curnamona Province contains rocks from 1,720 to 1,550 Ma. These ancient regions have undergone various deformation and metamorphic events but have remained relatively stable since around 1,450 Ma. The Adelaide Superbasin is a large sedimentary system formed during the Neoproterozoic to Cambrian, with distinct provinces. It started as an intracontinental rift system resulting from the breakup of Rodinia and transitioned into a passive margin basin in the southeast and a failed rift in the north. Later uplift and re-instigated rifting led to the deposition of thick Cambrian sediments overlying the Neoproterozoic rocks. Overlying basins include late Palaeozoic to Cenozoic formations, such as the Eromanga Basin and Lake Eyre Basin, which are not part of the assessment region but are adjacent to it.

  • This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.

  • This Darling Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The geological Darling Basin, covering approximately 130,000 square kilometres in western New South Wales (with parts in South Australia and Victoria), is filled with over 8,000 m of mainly Devonian sedimentary rocks formed in various environments, from alluvial to marine. It sits atop regional basement structures, coinciding with boundaries between Late Paleozoic Kanmantoo, Lachlan, and Southern Thomson Fold Belts. The basin's outcrops are scarce, obscured by younger rocks and sediments. Sedimentary rocks from Late Silurian to Early Carboniferous periods make up the basin, with marine shales and fluvial quartz-rich sandstones being the most common. The Menindee and Bancannia Troughs rest unconformably over Proterozoic and Lower Paleozoic basement rocks, while eastern sub-basins onlap deformed and metamorphosed Lower Paleozoic rocks. A major tectonic shift at the end of the Ordovician transformed south-eastern Australia's palaeogeography from a marginal marine sea to deep troughs and basins. The Darling Basin's discrete sedimentary troughs formed in areas of maximum tectonic extension, including the Ivanhoe, Blantyre, Pondie Range, Nelyambo, Neckarboo, Bancannia, Menindee troughs, and Poopelloe Lake complex. Spatial variation in sedimentary facies indicates potential interconnections between the troughs. The western basin overlies Proterozoic and Lower Paleozoic rocks of the Paroo and Wonominta basement blocks, while the eastern basin onlaps folded, faulted, and metamorphosed older Paleozoic rocks of the Lachlan Fold Belt. The Darling Basin has seen limited hydrocarbon exploration, with wells mostly situated on poorly-defined structures. Indications of petroleum presence include gas seeping from water bores, potential source rocks in sparsely sampled Early Devonian units, and occasional hydrocarbon shows in wells. Reservoir units boast good porosity and permeability, while Cambrian to Ordovician carbonates and shales beneath the basin are considered potential source rocks.

  • This Laura Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Laura Basin contains sedimentary rocks deposited between 168 and 102 million years ago during the Middle Jurassic to Early Cretaceous. The basin extends offshore beneath the Great Barrier Reef, and forms a bowl-shaped geologic feature. The strata have a maximum thickness of about 1,000 m in the north-central part of the onshore basin. Three main stratigraphic units comprise the stratigraphic succession of the Laura Basin, these being the Rolling Downs Group (Late Aptian to Albian, Cretaceous), the Gilbert River Formation (Lower Cretaceous to Jurassic) and the Dalrymple Sandstone (Upper to Middle Jurassic). The Rolling Downs Group was deposited in a shallow marine environment and has a basal shale unit (the Wallumbilla Formation) with minor siltstone and conglomerate bands overlain by marine silty and sandy claystone. The Gilbert River Formation was deposited in lagoonal to marginal marine environments and is dominated by clay-rich sandstone that is locally glauconitic and interbedded with minor calcareous siltstone, claystone and conglomerate. The Dalrymple Sandstone was deposited in lagoonal and fluvial environments and is dominated by sandstone with lesser claystone, siltstone, conglomerate, tuff and coal. The Laura Basin overlies older rocks of the Permian to Triassic Lakefield Basin, which extends northwards into surrounding marine waters, the Paleozoic metasedimentary rocks of the Hodgkinson region, associated with the Mossman Orogen, and Proterozoic basement rocks.

  • This Money Shoal Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Money Shoal Basin is a large passive margin basin in northern Australia, mainly located in the offshore Arafura Sea. Its sedimentary succession spans from the Mesozoic to the Cenozoic era, reaching a maximum thickness of 4,500 m in the northwest but thinner, less than 500 m, in central and eastern areas. The basin overlays the Neoproterozoic to Permian Arafura Basin and older Proterozoic rocks of the Pine Creek Orogen and McArthur Basin. It is bounded by the Bonaparte Basin to the west and the Carpentaria Basin to the east. The southern margin of the basin occurs onshore and is an erosional feature, although scattered remnant outliers of Money Shoal Basin rocks occur in isolated areas to the south and south-east of Darwin. The northern parts remain less explored, situated beyond Australia's maritime border with Indonesia. The basin's Mesozoic sediments were deposited during passive margin subsidence, and consequently remain relatively undeformed. Compressional tectonics were later initiated during the Cenozoic collision between the Indo-Australian plate and Southeast Asia, causing minor structural disruptions along the northwest margin of the Australian plate. Most of the sediments in the basin were deposited in shallow to marginal marine environments, with minor evidence for short-lived episodes of deltaic and fluvial deposition in some areas. The sedimentary packages in the offshore basin are divided into four groups: Troughton Group equivalent, Flamingo Group equivalent, Bathurst Island Group, and Woodbine Group equivalent. Onshore, the stratigraphic succession is limited to the Plover Formation equivalent, Bathurst Island Group, and the Eocene Van Diemen Sandstone. The Troughton Group extends from the Bonaparte Basin into western parts of the Money Shoal Basin, and chiefly consists of sandstone. The Flamingo Group, identified offshore, is considered equivalent to its Bonaparte Basin counterpart, characterized by sandstone and mudstone deposits, suggesting fluvial and deltaic settings. The Bathurst Island Group dominates onshore, composed mainly of fine-grained claystone, marl, and siltstone. The Woodbine Group is the uppermost unit, and is equivalent to the Woodbine Group of the Bonaparte Basin, consisting of Cenozoic deposits, primarily sandstone and claystone, indicating shallow marine and deltaic environments.

  • This Ngalia Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Ngalia Basin is an elongate, east-trending basin over 500 km long and 90 km wide. It occurs mostly in the Northern Territory, with limited occurrence in Western Australia. The Ngalia Basin is an intra-cratonic sedimentary basin in a structural downwarp formed by a faulted asymmetrical syncline. The basin began to form about 850 Ma, and contains a Neoproterozoic to Carboniferous sedimentary succession. Sedimentation ceased in response to the 450 to 300 Ma Alice Springs Orogeny. The maximum stratigraphic thickness of the Ngalia Basin is about 5000 m. The basin contains mainly arenaceous sedimentary rocks, with lesser fine-grained rock types and some carbonates. Fining upwards sedimentary cycles are commonly preserved and capped by calcite-cemented fine-grained sandstone and siltstone. Tectonic events disrupted deposition during basin evolution and led to at least ten unconformities. There are many disconformable contacts, with angular unconformities common in areas with abundant faulting. The upper-most arkosic sandstone formations in the Ngalia Basin are the Mount Eclipse Sandstone and the Kerridy Sandstone. These units have an aggregate thickness of several hundreds of metres and are the main aquifers within the Ngalia Basin sequence. There is some interstitial porosity, especially in the Mount Eclipse Sandstone, although joints and fissures associated with faulting provide significant secondary permeability. These aquifers provide good supplies of potable to brackish groundwater, and supply the community borefield at Yuendumu. The Ngalia Basin is almost entirely concealed by Cenozoic cover, including Palaeogene-Neogene palaeovalley, lake and alluvial fan sediment systems and Quaternary aeolian sands. Shallow aquifers with brackish to potable water occur in many palaeovalleys sediments overlying the basin.

  • This South Australian Gulf and Yorke Cenozoic Basins dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Australian Gulf and Yorke Cenozoic basins consist of eleven separate basins with similar sediments. These relatively small to moderate-sized basins overlies older rocks from the Permian, Cambrian, or Precambrian periods and are often bounded by north-trending faults or basement highs. The largest basins, Torrens, Pirie, and Saint Vincent, share boundaries. The Torrens and Pirie basins are fault-bounded structural depressions linked to the Torrens Hinge Zone, while the Saint Vincent basin is a fault-bounded intra-cratonic graben. Smaller isolated basins include Carribie and Para Wurlie near the Yorke Peninsula, and Willochra and Walloway in the southern Flinders Ranges. The Barossa Basin, Hindmarsh Tiers, Myponga, and Meadows basins are in the Adelaide region. These basins resulted from tectonic movements during the Eocene Australian-Antarctic separation, with many forming in the late Oligocene. Sediment deposition occurred during the Oligocene to Holocene, with various environments influenced by marine transgressions and regressions. The well-studied Saint Vincent Basin contains diverse sediments deposited in fluvial, alluvial, deltaic, swamp, marine, littoral, beach, and colluvial settings, with over 30 major shoreline migrations. Eocene deposition formed fluvio-deltaic lignite and sand deposits, before transitioning to deeper marine settings. The Oligocene and Miocene saw limestone, calcarenite, and clay deposition, overlain by Pliocene marine sands and limestones. The uppermost sequences include interbedded Pliocene to Pleistocene limestone, sand, gravel, and clay, as well as Pleistocene clay with minor sand lenses, and Holocene to modern coastal deposits. The sediment thickness varies from less than 50 m to approximately 600 m, with the Saint Vincent Basin having the most substantial infill. Some basins were previously connected to the Saint Vincent Basin's marine depositional systems but later separated due to tectonic movements.

  • This Port Phillip-Westernport Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Port Phillip and Westernport basins are small, shallow sedimentary basins located in south-central Victoria, formed during the Late Cretaceous rifting of Australia and Antarctica. They share similar stratigraphy with nearby basins. The Port Phillip Basin is bounded by the Selwyn and Rowsley Faults to the east and west, while the Heath Hill Fault marks the eastern boundary of the Westernport Basin. Both basins have pre-Cenozoic basement rocks comprising folded and faulted Paleozoic metasedimentary rocks and granites from the Lachlan Fold Belt. The Port Phillip Basin's stratigraphy includes Maastrichtian to Cenozoic sedimentary units with intercalated volcanic rocks. The main depocentres are the Sorrento Graben, Ballan Graben/Lal Lal Trough, and Parwan Trough. Notable formations are the Yaloak and Werribee formations, with coal-bearing strata and marine sediments. The Westernport Basin has coastal sediments and volcanic deposits from Paleocene to Holocene. It experienced marine transgressions and regressions due to sea-level fluctuations. Fault movements in the late Pliocene and early Pleistocene formed a fault-bounded depression centered on the Koo Wee Rup Plain. The main units are the Childers Formation, Older Volcanics, Yallock Formation, Sherwood Marl, and Baxter Sandstone. Both basins have Quaternary sediments, including Pleistocene eolian sand sequences, Holocene alluvial and paludal clays, and fluvial sediments in valleys and palaeovalleys. The Port Phillip Basin contains distinct phases of terrestrial and marine deposition, while the Westernport Basin has Eocene volcanism and marine sediments. These basins are important geological features in the region, with various formations representing millions of years of geological history.

  • This Arafura Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Arafura Basin is a large intracratonic sedimentary basin along the northern continental margin of Australia. Over 90% of the basin occurs offshore in relatively shallow marine waters of the Arafura Sea, with the basin extending northwards beyond Australia's territorial claim. The southern part of the basin is onshore in northern Arnhem Land. Older Paleo- to Mesoproterozoic rocks of the northern Macarthur Basin underlie most of the onshore basin, whereas Mesozoic and Cenozoic sediments of the Money Shoal Basin unconformably overlie the offshore basin. The sedimentary record of the Arafura Basin spans greater than 250 million years, from the late Neoproterozoic to the early Permian. However, subsidence was episodic and restricted to four main phases of regional subsidence interspersed with relatively long periods of tectonic quiescence. Consequently, the entire sedimentary succession of the basin is relatively structurally conformable. The oldest rocks are the Neoproterozoic to Cambrian Wessel Group. These are overlain by the Middle Cambrian to early Ordovician Goulburn Group, followed by the Late Devonian Arafura Group. The uppermost sequence is Late Carboniferous to early Permian (an equivalent of the Kulshill Group from the neighbouring Bonaparte Basin). The sedimentary rocks of the Arafura Basin are clastic-dominated and include sandstone, shale, limestone, dolostone and minor coal and glacial deposits. Most of the Arafura Basin formed within shallow marine environments, with evidence for fluvial conditions largely restricted to the Carboniferous to Permian rocks. There are no detailed basin-scale studies on the hydrogeology and groundwater systems of the Arafura Basin. Previous hydrogeological investigations by the Northern Territory Government during the 1980s and 1990s focused on groundwater supplies for remote communities such as Maningrida, Galiwinku and Millingimbi. Groundwater for these communities is sourced from fractured rock sandstone aquifers, most likely units of the Arafura Basin such as the Marchinbar Sandstone and Elcho Island Formation of the Wessel Group. The aquifers are fractured and extensively weathered up to 100 metres below surface.