From 1 - 10 / 10
  • This resource contains a predicted seabed gravel content grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government's Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted seabed gravel content grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR. This dataset provides spatially continuous predictions of seabed %gravel (>2000 µm) content for the Darwin and Bynoe harbour region, northern Australian marine margin. Data are presented in 10 m resolution raster grids format and ascii text file. Predictions are based on 395 samples and 14 environmental variables derived from high resolution multibeam sonar bathymetry and backscatter data. Accuracy of predictions is high, with a VEcv = 59% for gravel; and the predictive accuracy has been increased by 68.4% for gravel in comparison with the commonly used method (i.e., IDW). Absences in predictions occur in this dataset as a result of non-availability associated with predictive variables. This dataset supersedes previous predictions of mud content for the Darwin and Bynoe harbour region with demonstrated improvements in predictive accuracy.

  • This resource contains a predicted seabed sand content grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government's Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted seabed sand content grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR. This dataset provides spatially continuous predictions of seabed %sand (63-2000 µm) content for the Darwin and Bynoe harbour region, northern Australian marine margin. Data are presented in 10 m resolution raster grids format and ascii text file. Predictions are based on 395 samples and seven environmental variables derived from high resolution multibeam sonar bathymetry and backscatter data. Accuracy of predictions is high, with a VEcv = 39% for sand; and the predictive accuracy has been increased by 84.8% for sand in comparison with the commonly used method (i.e., IDW). Absences in predictions occur in this dataset as a result of non-availability associated with predictive variables. This dataset supersedes previous predictions of sand content for the Darwin and Bynoe harbour region with demonstrated improvements in predictive accuracy.

  • This resource contains a video annotation record for the greater Darwin Harbour region as part of a baseline habitat mapping program for the Darwin Harbour region (including Bynoe Harbour) through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) and co-investment from Geoscience Australia (GA), Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The video annotation record was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018).

  • This resource contains a probability of occurrence grid of filter feeders for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The probability of occurrence grid of filter feeders was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.

  • This resource contains a probability of occurrence grid of hard corals for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The probability of occurrence grid of hard corals was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.

  • This resource contains a probability of occurrence grid of seagrass for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The probability of occurrence grid of seagrass was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.

  • This resource contains a predicted seabed mud content grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government's Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted seabed mud content grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR. This dataset provides spatially continuous predictions of seabed %mud (< 63 µm) content for the Darwin and Bynoe harbour region, northern Australian marine margin. Data are presented in 10 m resolution raster grids format and ascii text file. Predictions are based on 395 samples and nine environmental variables derived from high resolution multibeam sonar bathymetry and backscatter data. Accuracy of predictions is very high, with a VEcv = 62% for mud; and the predictive accuracy has been increased by 198.3% for mud in comparison with the commonly used method (i.e., IDW). Absences in predictions occur in this dataset as a result of non-availability associated with predictive variables. This dataset supersedes previous predictions of mud content for the Darwin and Bynoe harbour region with demonstrated improvements in predictive accuracy.

  • This resource contains a maximum likelihood map of five benthic habitat for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The a maximum likelihood map of five benthic habitat was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.

  • This resource contains a probability of occurrence grid of macro algae for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The probability of occurrence grid of macro algae was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.

  • This resource contains a probability of occurrence grid of bare seafloor for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The probability of occurrence grid of bare seafloor was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from a previous survey GA0333 collected by GA, AIMS and NTG-DENR.