From 1 - 10 / 54
  • Airborne electromagnetic (AEM) data measure variations in the conductivity of the ground by transmitting an electromagnetic signal from a system attached to a plane or helicopter. Depending on the AEM system used and the sub-surface conditions, AEM techniques can detect variations in the conductivity of the ground to a depth of several hundred metres. The responses recorded are commonly caused by the presence of electrically conductive materials such as salt or saline water, graphite, clays and sulphide minerals. <b>Value:</b> Data used for interpreting the geologic structure of the subsurface. This work can be used for the assessment of resource potential. <b>Scope:</b> Systematic coverage of large portions of the Australian continent.

  • This is a physical collection of photographic materials created by staff of Geoscience Australia (GA) and its predecessor organisations in the course of their work between the early 1920s and the early 21st century. <b>Value: </b>Historic and scientific significance. Many sites visited are remote and have rarely been revisited. Some images are of people from First Nations, flora and fauna of Australia, its territories and other countries. <b>Scope: </b> Geographical scope is largely Australia, pre- and post-Independence Papua New Guinea, and the Australian Antarctic Territory, but other countries and territories are represented. Thematic scope varies considerably, covering a diverse range of operations of a geological survey, including land and marine surveys, field installations, rock and fossil specimens (in situ, laboratory and under microscope), buildings, passport photographs, etc. The majority of the physical image collection (photos, negatives and glass plates) is still hardcopy only and stored in an access restricted room. This collection requires extensive work to develop a comprehensive catalogue of its contents and explore options for digitisation. <b>Queries can be directed to Records Management Unit (RMU) via the <a href="https://supportworkplace.ga.gov.au/CherwellPortal/Geoscience/">Support Workplace tool</a>. </b> More recent mages received from business area's and departing staff members have been digitised and are stored in HPRM folders: P14/50 - GA Image Collection (A20/615, A20/614, A20/598, A18/111) A spreadsheet containing metadata (D2019-4576) for these images (previously delivered via a now decommissioned database), can be viewed via the Download tab. Note: This HVC record is currently only visible to internal GA staff. <b>If anyone has any additional photographic collections that reflect the history of Geoscience Australia (or its predecessor organisations) the Records Management Unit would be very interested in chatting to you.</b>

  • Collection of mineral, gem, meteorite, fossil (including the Commonwealth Palaeontological Collection) and petrographic thin section specimens dating back to the early 1900s. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, and geoscience education and outreach. Over 700 specimens from the collection are displayed in our public gallery . The collection contains: • 15,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC) mainly from Australia. • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 250,000 petrographic thin section slides. • 200 historical geoscience instruments including: cartography, geophysical, and laboratory equipment." <b>Value: </b>Specimens in the collection are derived from Geoscience Australia (GA) surveys, submissions by researchers, donations, purchases and bequests. A number of mineral specimens are held on behalf of the National Museum of Australia. <b>Scope: </b>This is a national collection that began in the early 1900s with early Commonwealth surveys collecting material across the country and British territories. The mineral specimens are mainly from across Australia, with a strong representation from major mineral deposits such as Broken Hill, and almost 40% from the rest of the world. The majority of fossils are from Australia, with a small proportion from lands historically or currently under Australian control, such as Papua New Guinea and the Australian Antarctic Territory.

  • This collection supports the compilation of national mineral resource and production statistics, and mineral prospectivity analysis. The collection includes the location of Australian mineral occurrences and mineral deposit descriptions, with geological, resource and production data. This information is stored in two Geoscience Australia databases, the Mineral Deposits & Occurrences Database (OZMIN) and the Mineral Occurrence Locations (MINLOC) database. The collection also includes a number of supporting Geographic Information System (GIS) datasets (e.g., mineral prospectivity datasets, ports, power stations); maps and reports. <b>Value:</b> Data related to the known location and production of mineral resources supports decisions related to resource and economic development. <b>Scope: </b>The collection covers the Australian continent and is updated annually. It now contains data on over one thousand major and historically significant mineral deposits for 60 mineral commodities (including coal).

  • This collection includes information regarding the location and design of Australian onshore and offshore boreholes, where boreholes are defined as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally. In this context, boreholes include: Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. <b>Value: </b> Information related to the boreholes described in this collection have the potential to support geological investigations and assessment of a variety of resources. <b>Scope: </b>Selected open file boreholes Australian boreholes located onshore and offshore

  • Radiogenic isotopes decay at known rates and can be used to interpret ages for minerals, rocks and geologic processes. Different isotopic systems provide information related to different time periods and geologic processes, systems include: U-Pb and Ar/Ar, Sm-Nd, Pb-Pb, Lu-Hf, Rb-Sr and Re-Os isotopes. The GEOCHRON database stores full analytical U-Pb age data from Geoscience Australia's (GA) Sensitive High Resolution Ion Micro-Probe (SHRIMP) program. The ISOTOPE database is designed to expand GA's ability to deliver isotopic datasets, and stores compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. OZCHRON is a depreciated predecessor to GEOCHRON and ISOTOPE, the information once available in OZCHRON is in the process of migration to the two current databases. The ISOTOPE compilation includes sample and bibliographic links through the A, FGDM, and GEOREF databases. The data structure currently supports summary ages (e.g., U-Pb and Ar/Ar) through the INTERPRETED_AGES tables, as well as extended system-specific tables for Sm-Nd, Pb-Pb, Lu-Hf and O- isotopes. The data structure is designed to be extensible to adapt to evolving requirements for the storage of isotopic data. ISOTOPE and the data holdings were initially developed as part of the Exploring for the Future (EFTF) program - particularly to support the delivery of an Isotopic Atlas of Australia. During development of ISOTOPE, some key considerations in compiling and storing diverse, multi-purpose isotopic datasets were developed: 1) Improved sample characterisation and bibliographic links. Often, the usefulness of an isotopic dataset is limited by the metadata available for the parent sample. Better harvesting of fundamental sample data (and better integration with related national datasets such as Australian Geological Provinces and the Australian Stratigraphic Units Database) simplifies the process of filtering an isotopic data compilation using spatial, geological and bibliographic criteria, as well as facilitating 'audits' targeting missing isotopic data. 2) Generalised, extensible structures for isotopic data. The need for system-specific tables for isotopic analyses does not preclude the development of generalised data-structures that reflect universal relationships. GA has modelled relational tables linking system-specific Sessions, Analyses, and interpreted data-Groups, which has proven adequate for all of the Isotopic Atlas layers developed thus far. 3) Dual delivery of 'derived' isotopic data. In some systems, it is critical to capture the published data (i.e. isotopic measurements and derived values, as presented by the original author) and generate an additional set of derived values from the same measurements, calculated using a single set of reference parameters (e.g. decay constant, depleted-mantle values, etc.) that permit 'normalised' portrayal of the data compilation-wide. 4) Flexibility in data delivery mode. In radiogenic isotope geochronology (e.g. U-Pb, Ar-Ar), careful compilation and attribution of 'interpreted ages' can meet the needs of much of the user-base, even without an explicit link to the constituent analyses. In contrast, isotope geochemistry (especially microbeam-based methods such as Lu-Hf via laser ablation) is usually focused on the individual measurements, without which interpreted 'sample-averages' have limited value. Data delivery should reflect key differences of this kind. <b>Value: </b>Used to provide ages and isotope geochemistry data for minerals, rocks and geologic processes. <b>Scope: </b>Australian jurisdictions and international collaborative programs involving Geoscience Australia

  • The collection includes 17,247 measurements of temperature and temperature gradients collected down 5513 individual wells. This information formed the basis for the 'OZTemp Interpreted Temperature at 5km Depth' image of Australia <b>Value: </b>These observations are used to assess heat flow which can be used to infer deep geologic structure, which is valuable for exploration and reconstructions of Australia's evolution <b>Scope: </b>Nationwide collection corresponding to accessible boreholes and published measurements

  • Data in the GEOCHEM database comprises inorganic geochemical analytical data and associated metadata. Geochemical data comprises concentration data (value, error, unit of measure) measured on a range of analytical instruments, for a range of elements of the periodic table. Associated metadata includes information on analytical techniques, analytical methodology, laboratory, analysts, date of analysis, detection limits, accuracy, and precision. The GEOCHEM database also records results for reference standards. Data is specifically for rocks, soils and other unconsolidated geological material and does not include oils, gases or water analyses. Geochemical data may be total rock (i.e., whole rock analysed) or for a variety of fractions of the total rock, e.g., various non-total acid digests, mineral separates, differing size fractions. It also includes quantitative to semi-quantitative data from field measurements, such as portable x-ray fluorescence (XRF). It does not include geochemical data for individual minerals. <b>Value: </b>Geochemical data underpins much geoscientific study, and is used directly to classify, characterise and understand geological material and its formation. It has direct relevance to understanding the formation of the earth, the continents, and the processes that create and shape the surface we live on. For example, this information is used within: both discovering and the understanding of mineral deposits we depend on; the nature, health and sustainability of the soils we live and farm on; as well as providing input into a range of potential geohazards. <b>Scope: </b>The collection includes data from over 60 years of Geoscience Australia (GA) and state/territory partner regional geological projects within Australia, as well as continental-scale and regional geochemical surveys like National Geochemical Survey of Australia (NGSA) and Northern Australia Geochemical Survey (NAGS) (Exploring for the Future- EFTF). It also includes data from other countries that GA has worked with, e.g., Papua New Guinea, Antarctica, Solomon Islands and New Zealand. Explore the <b>Geoscience Australia portal - <a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a></b>

  • This data collection are comprised of magnetic surveys acquired across Australia by Commonwealth, State and Northern Territory governments and the private sector with project management and quality control undertaken by Geoscience Australia. Magnetic surveying is a geophysical method for measuring the intensity (or strength) of the Earth's magnetic field, which includes the fields associated with the Earth's core and the magnetism of rocks in the Earth's crust. Measuring the magnetism of rocks, in particular, provides a means for the direct detection of several different types of mineral deposits and for geological mapping. The magnetism of rocks depends on the volume, orientation and distribution of their constituent magnetic minerals (namely magnetite, monoclinic pyrrhotite, maghaemite and ilmenite). The instrument used in magnetic surveys is a magnetometer, which can measure the intensity of the magnetic field in nanoteslas (nT). Magnetic surveys in this collection have been acquired using aircraft or ship-mounted magnetometers and are a non-invasive method for investigating subsurface geology.

  • This data collection is comprised of radiometric (gamma-ray spectrometric) surveys acquired across Australia by Commonwealth, State and Northern Territory governments and the private sector with project management and quality control undertaken by Geoscience Australia. The radiometric method measures naturally occurring radioactivity arising from gamma-rays. In particular, the method is able to identify the presence of the radioactive isotopes potassium (K), uranium (U) and thorium (Th). The measured radioactivity is then converted into concentrations of the radioelements K, U and Th in the ground. Radiometric surveys have a limited ability to see into the subsurface with the measured radioactivity originating from top few centimetres of the ground. These surveys are primarily used as a geological mapping tool as changes in rock and soil type are often accompanied by changes in the concentrations of the radioactive isotopes of K, U and Th. The method is also capable of directly detecting mineral deposits. For example, K alteration can be detected using the radiometric method and is often associated with hydrothermal ore deposits. Similarly, the method is also used for U and Th exploration, heat flow studies, and environmental mapping purposes such as characterising surface drainage features. The instrument used in radiometric surveys is a gamma-ray spectrometer. This instrument measures the number of radioactive emissions (measured in counts per second) and their energies (measured in electron volts (eV)). Radiometric data are simultaneously acquired with magnetic data during airborne surveys and are a non-invasive method for investigating near-surface geology and regolith.