From 1 - 10 / 42
  • <div>Groundwater dependent ecosystems (GDEs) rely on access to groundwater on a permanent or intermittent basis to meet some or all of their water requirements (Richardson et al., 2011). The <a href="https://explorer-aws.dea.ga.gov.au/products/ga_ls_tc_pc_cyear_3">Tasselled Cap percentile products</a> created by Digital Earth Australia (2023) were used to identify potential GDEs for the upper Darling River floodplain study area. These percentile products provide statistical summaries (10th, 50th, 90th percentiles) of landscape brightness, greenness and wetness in imagery acquired between 1987 and present day. The 10th percentile greenness and wetness represent the lowest 10% of values for the time period evaluated, e.g. 10th greenness represents the least green period. In arid regions, areas that are depicted as persistently green and/or wet at the 10th percentile have the greatest potential to be GDEs. For this reason, and due to accessibility of the data, the 10th percentile Tasselled Cap greenness (TCG) and Tasselled Cap wetness (TCW) products were used as the basis for the assessment of GDEs for the upper Darling River floodplain study area. </div><div><br></div><div>This data release is an ESRI geodatabase, with layer files, including:</div><div><br></div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;original greenness and wetness datasets extracted; </div><div><br></div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;classified 10th percentile greenness and wetness datasets (used as input for the combined dataset); </div><div><br></div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;combined scaled 10th percentile greenness and wetness dataset (useful for a quick glance to identify potential groundwater dependent vegetation (GDV) that have high greenness and wetness e.g. river red gums)</div><div><br></div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;combined classified 10th percentile greenness and wetness dataset (useful to identify potential GDV/GDE and differentiate between vegetation types)</div><div><br></div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;coefficient of variation of 50th percentile greenness dataset (useful when used in conjunction with the scaled/combined products to help identify GDEs)</div><div><br></div><div>For more information and detail on these products, refer to <a href="https://dx.doi.org/10.26186/148545">https://dx.doi.org/10.26186/148545</a>.</div><div><br></div><div><strong>References</strong></div><div>Digital Earth Australia (2023). <em><a href="https://docs.dea.ga.gov.au">Digital Earth Australia User Guide</a></em>. </div><div>Richardson, S., E. Irvine, R. Froend, P. Boon, S. Barber, and B. Bonneville. 2011a. <em>Australian groundwater-dependent ecosystem toolbox part 1: Assessment framework.</em> Waterlines Report 69. Canberra, Australia: Waterlines.</div>

  • <div>Groundwater is a finite and largely hidden resource. Enhancing scientific understanding of groundwater systems improves decisions about its planning, allocation and use. This benefits all Australians through improved water management.</div><div>Australia’s groundwater resources underpin billions of dollars of economic activity, provide safe and reliable drinking water for millions of people, and sustain life and cultural values across the country. Sustainably managing our critical groundwater resources is vital to improving water security and protecting the environment.</div><div>Geoscience Australia and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) collaborate on initiatives funded by the Australian Government. We work together to deliver innovative solutions to nationally significant issues affecting Australia’s groundwater resources.</div><div>With world‑class expertise and facilities, we are at the forefront of groundwater science. Our combined hydrogeological capabilities are best applied to regional and national-scale challenges that extend beyond the remit of individual jurisdictions or private industry.</div><div>This publication highlights the scientific approaches, technologies, and methods that we apply to better understand and characterise Australia’s groundwater and includes case studies that demonstrate the unique value of our collaboration.</div><div><br></div>

  • <div>This report details results and methodology from two hydrochemistry sampling programs performed as part of Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project is a data acquisition and scientific investigation program based around the central west of Australia. It is aimed at investigating groundwater processes and resources within the Cenozoic fill and palaeovalleys of the region. This project, and many others, have been performed as part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program.</div><div>Data released here is from 18 bores sampled for groundwater and tested for a range of analytes including field parameters, major and minor elements, isotopes and trace gases. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report.</div>

  • <div>In response to the acquisition of national-scale airborne electromagnetic surveys and the development of a national depth estimates database, a new workflow has been established to interpret airborne electromagnetic conductivity sections. This workflow allows for high quantities of high quality interpretation-specific metadata to be attributed to each interpretation line or point. The conductivity sections are interpreted in 2D space, and are registered in 3D space using code developed at Geoscience Australia. This code also verifies stratigraphic unit information against the national Australian Stratigraphic Units Database, and extracts interpretation geometry and geological data, such as depth estimates compiled in the Estimates of Geological and Geophysical Surfaces database. Interpretations made using this workflow are spatially consistent and contain large amounts of useful stratigraphic unit information. These interpretations are made freely-accessible as 1) text files and 3D objects through an electronic catalogue, 2) as point data through a point database accessible via a data portal, and 3) available for 3D visualisation and interrogation through a 3D data portal. These precompetitive data support the construction of national 3D geological architecture models, including cover and basement surface models, and resource prospectivity models. These models are in turn used to inform academia, industry and governments on decision-making, land use, environmental management, hazard mapping, and resource exploration.</div>

  • <div>Geoscience Australia, in partnership with Commonwealth, State and Territory governments is delivering national and regional groundwater investigations through the Exploring for the Future (EFTF) Program to support water management decisions. Geoscience Australia’s groundwater studies apply innovative geoscience tools and robust geoscientific workflows to increase knowledge and understanding of groundwater systems and assessment of groundwater resource potential for economies, communities and the environment.&nbsp;</div> This presentation was given at the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • Groundwater is critical to Australia’s future economic development and is the only reliable water source for many regional and rural communities. It also sustains environmental and cultural assets including springs and groundwater-dependent ecosystems. The demand for groundwater in Australia is expected to increase with population growth, economic development and climate change. Geoscience Australia, in partnership with Commonwealth, State and Territory governments is delivering national and regional groundwater investigations through the Exploring for the Future (EFTF) Program to support water management decisions. Geoscience Australia’s groundwater studies apply innovative geoscience tools and robust geoscientific workflows to increase knowledge and understanding of groundwater systems and assessment of groundwater resource potential for economies, communities and the environment. Through integrating geological and hydrogeological data, airborne electromagnetic and ground-based geophysical, hydrogeochemical and remote sensing data, we have developed new geological and hydrogeological conceptual models and identified potential managed aquifer recharge sites in a number of areas across Northern Australia. The EFTF program is focussed on improving our understanding of Australia's groundwater through a National Groundwater Systems project as well as two regional-scale groundwater investigations in Southern Australia. We are commencing an inventory of Australia’s groundwater systems in onshore basins that includes a compilation and broad interpretation of hydrogeological information. This is the basis for the collation and curation of nationally seamless groundwater information to support informed decision making and water resource coordination across jurisdictions. All data and value-added products are freely available for public use via the Exploring for the Future Data Discovery portal (https://portal.ga.gov.au/). This Abstract was submitted to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>The Australian Government's Trusted Environmental and Geological Information program is a collaboration between Geoscience Australia and CSIRO. Part of this program includes baseline geological and environmental assessments. </div><div> Hydrogeological information has been collated for the Adavale, Cooper, Galilee and north Bowen basins and overlying basins, including the Eromanga and Lake Eyre basins. This information will provide a regionally-consistent baseline dataset that will be used to develop groundwater conceptualisation models.</div><div> Publicly-available data within these basin regions have been compiled from over 30&nbsp;000 boreholes, 120 stream gauges, and 1100 rainfall stations, resulting in revised hydrostratigraphic frameworks. From the published literature, 14 major hydrostratigraphic units are recognised within the basin regions. For each of these major hydrostratigraphic units, we determined the salinity, Darcian yield, specific yield/storativity, groundwater reserve volume for unallocated groundwater, groundwater levels/hydrological pressure, likelihood of inter-aquifer connectivity, rainfall, connectivity between surface water and groundwater, and water-use volume statistics, where relevant, for each basin, hydrogeological province and aquifer. We then adopted a play-based approach to develop holistic hydrostratigraphic conceptualisations of the basin regions. </div><div> Within the Adavale Basin we have defined a new hydrogeological province including two new aquifers defined as the moderate salinity and moderately overpressured Buckabie-Etonvale Aquifer, and the hypersaline and hyper-overpressured Lissoy-Log Creek-Eastwood Aquifer. Similarities between the upper Buckabie-Etonvale Aquifer of the Adavale Basin and lowermost Joe Joe Group of the Galilee Basin suggests connectivity between the upper Adavale and lower Galilee basins. Hydraulic pressures (up to 1500 m of excess freshwater head) calculated for the Lissoy–Log Creek–Eastwood Aquifer indicate that if the aquifer was to be breached, there is potential localised risk to overlying aquifers and surface environments, including infrastructure.</div><div><br></div><div><strong>Author Biography:</strong></div><div>Dr. Chris Gouramanis is a hydrogeologist working in the Trusted Environmental and Geological Information program, in the Minerals, Energy and Groundwater Division of Geoscience Australia. Chris was awarded his PhD from The Australian National University in 2009 and has held several water and environmental policy positions within the Australian Government. He worked for 10 years as an academic at the Earth Observatory of Singapore and the Geography Department at the National University of Singapore. He is also Australia’s National Focal Point to the Scientific and Technical Review Panel of the Ramsar Convention on Wetlands.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>Australia is the driest inhabited continent on Earth and groundwater is crucial to maintaining the country’s population, economic activities, Indigenous culture and environmental values. Geoscience Australia is renewing a national-scale focus to tackle hydrogeological challenges by building upon our historic legacy in groundwater studies at regional and national scales.</div><div><br></div><div>The most comprehensive hydrogeological coverage of the nation is the 1987 Hydrogeology of Australia map, developed by a predecessor of Geoscience Australia. This map provides an overview of groundwater systems and principal aquifers across Australia, based upon the large sedimentary basins, intervening fractured rock areas and smaller overlying sedimentary/volcanic aquifers. However, the currency and completeness of the information presented and accompanying the national hydrogeology map needs to be improved. Updating the extents, data and scientific understanding of the hydrogeological regions across Australia, and improving the accessibility and useability of this information will address many of its current limitations.</div><div><br></div><div>Geoscience Australia, within its Exploring for the Future program, is compiling hydrogeological and related contextual information clearly and consistently across Australia’s major sedimentary basins and intervening fractured rock provinces. This information has been collected for 41 major hydrogeological regions spanning the continent: 36 sedimentary basins and 5 regions dominated by fractured-rock aquifers. The information, collected through a combination of geospatial analyses of national datasets and high-level summaries of scientific literature, will be presented through Geoscience Australia’s online data discovery portal, thereby enabling improved interrogation and integration with other web mapping services.</div><div><br></div><div>The new compilation of nationally consistent groundwater data and information will help to prioritise future investment for new groundwater research in specific regions or basins, inform the work programs of Geoscience Australia and influence the prioritisation of national hydrogeological research more broadly.&nbsp;</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>Cooper Creek is a dryland river system that extends from the western Great Dividing Range in Central Queensland to Lake Eyre in South Australia. The middle course of the Cooper Creek is characterised by anabranching river channels across a wide floodplain that flow intermittently due to monsoonal flooding event higher in the catchment. As floodwaters recede, freshwater stagnates within numerous deeper segments of river channels forming ‘waterholes’ which support ecosystems with significant ecological and cultural value. However, there is little evidence that shallow groundwater discharges into these surface water bodies and the link between surface water and groundwater is not well understood. This study aims to demonstrate how airborne electromagnetics (AEM) and other geoscientific data can be integrated to identify recharge within shallow saline groundwater systems, which are so common in arid inland Australia.</div><div> The regional water table underneath the floodplain is shallow (<10m) and highly saline (>38,000 TDS), with a chemical signature suggesting salts were concentrated by evapotranspiration. Surface swelling clays likely limits the amount of recharge that occurs through the floodplain itself. However, a detailed study by Cendón et al (2010) found that during high flow events, floodwater scoured the base of the waterholes allowing freshwater to recharges into the shallow groundwater system forming chemically distinct freshwater lenses.</div><div> AEM is a geophysical technique capable of estimating bulk conductivity for the top few hundred metres of the subsurface. Part of the AusAEM Eastern Resource Corridor survey (Ley-Cooper 2021) crossed the Cooper Creek floodplain with a 20km line spacing. The bulk conductivity models delivered as part of this survey resolved the top of the saline water table regionally. In several locations, we identified resistive lenses sitting on the shallow water table which coincide with river channels that are frequently inundated.</div><div><br></div><div>Cendón, D.I., Larsen, J.R., Jones, B.G., Nanson, G.C., Rickleman, D., Hankin, S.I., Pueyo, J.J. and Maroulis, J., 2010. Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia.&nbsp;<em>Journal of Hydrology</em>,&nbsp;<em>392</em>(3-4), pp.150-163.</div><div>LeyCooper, Y. 2021. Exploring for the Future AusAEM Eastern Resources Corridor: 2021 Airborne Electromagnetic Survey TEMPEST® airborne electromagnetic data and GALEI inversion conductivity estimates. Geoscience Australia, Canberra.</div> This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)

  • <div>As part of the Exploring for the Future (EFTF) programme, the groundwater team undertook an in-depth investigation into characterising surface water -- groundwater interaction in the Cooper Creek floodplain using airborne electromagnetics (AEM). This work is to be released as part of the Lake Eyre Basin detailed inventory and as an EFTF extended abstract. As part of Geoscience Australia's commitment to transparent science, the scientific workflows that underpinned a large component of this investigation are to be released as a jupyter notebook. This notebook contains python code, figures and explanatory text that the reader can use to understand how the AEM data were processed, visualised, integrated with other data and interpreted.</div>