From 1 - 10 / 44
  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Galilee Basin. The unconventional hydrocarbon assessment for the Galilee Basin includes tight gas, shale resources (shale oil and gas) and coal seam gas (CSG) for 5 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) along with the scientific literature to inform the components required for unconventional hydrocarbons to be present. One hundred and sixty-three boreholes in the Galilee Basin were assessed, with data used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide outlines the play-based workflow for assessing unconventional hydrocarbon resource prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data were merged and spatially multiplied to show the relative assessment of unconventional hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the CSG prospectivity of the Betts CreekRewan Play interval.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Galilee Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water - groundwater interactions. The methods used to derive these data for all Galilee Basin aquifers in the Galilee Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Hostetler et al., 2023). The Galilee Basin includes 3 broadly defined aquifer intervals: from deepest to shallowest, these are the Joe Joe Group, Betts Creek beds and Clematis aquifers. Compiled data have been assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 were used for this compilation.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This web service summarises oil and gas prospectivity of the Galilee Basin.

  • Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Galilee Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Galilee Basin, including streamflow quality and quantity, inundation, and climatological data. The Galilee Basin straddles the Great Dividing Range and encompasses the headwaters of 9 major river basins, with the largest area underlying Cooper Creek, Diamantina River and Flinders River catchments. The Galilee Basin geological boundary also intersects parts of the catchment of the Burdekin River, Fitzroy River, Warrego River, Bulloo River, Paroo River and Condamine-Balonne rivers. The data on the catchments overlying the Galilee Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Galilee Basin. The geological storage of CO2 assessment for the Galilee Basin encompasses 5 geological intervals, termed plays – these have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 4 components required for a potential geological storage of CO2 system. One hundred and sixty-three boreholes in the Galilee Basin were used to map out gross depositional environments and their geological properties relevant for geological storage of CO2. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of carbon dioxide system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of carbon dioxide prospectivity across the basin at both a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Betts Creek-Rewan Play interval.

  • The potential for hydrogen production in the Galilee Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater and natural gas coupled with carbon capture and storage (CCS). This web service summarises hydrogen potential in the Galilee Basin region.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Galilee Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods to derive these data for all Galilee Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Galilee Basin overlying the Adavale Basin includes 3 broadly defined aquifer intervals: from deepest to shallowest, these are the Joe Joe Group, Betts Creek beds and Clematis aquifers. Compiled data have been assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available geology data are compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used and supports the data package that provides the existing knowledge of the key geological intervals of the Galilee Basin and the overlying Eromanga, Lake Eyre and other Cenozoic basins. The key geological intervals identified by the Trusted Environmental and Geological Information (TEGI) Program for resource assessment and groundwater system characterisation are termed play intervals and hydrostratigraphic intervals respectively. The Galilee Basin includes 5 plays, which are consolidated into 3 hydrostratigraphic intervals (see Table 1). Overlying the Galilee Basin are 9 play intervals of the Eromanga Basin, which are consolidated into 7 hydrostratigraphic intervals and 1 Cenozoic play interval and 1 hydrostratigraphic interval for the Lake Eyre and other Cenozoic basins. The geological groups and formations included in the plays and hydrostratigraphic intervals are summarised in the stratigraphic charts of Wainman et al. (2023a). Gross depositional, depth structure and thickness maps are provided, with 3D model and cross-sections summarising the geology of the Galilee Basin and the overlying basins. The mapped depths and thicknesses of the key intervals are used to inform resource assessments and provide the framework for assigning groundwater data to hydrostratigraphic intervals.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Lake Eyre Basin located within the Galilee Basin region.

  • Publicly available geological data in the Galilee Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises mineral potential in the Galilee Basin region.