Environmental Science and Management
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This presentation will provide an overview of geological storage projects and research in Australia.
-
In 2010, a network of Marine Protected Areas (MPAs) was proposed for the East Antarctic region. This proposal was based on the best available data, which for the benthic regime consisted chiefly of seabed geomorphology and satellite bathymetry data. Case studies from the East Antarctic region indicate that depth and morphology are important factors in delineating marine benthic communities, particularly on the continental shelf. However, parameters such as sediment composition also show a strong association with the distribution and diversity of benthic assemblages. A better assessment of the nature of benthic habitats within the proposed MPA network is now possible with the incorporation of a compilation of sediment properties and higher resolution bathymetry grids across the East Antarctic region (see Figures A and B). Based on these physical properties, and in combination with the seabed morphology, we can now distinguish a range of distinct habitats, such as deep muddy basins, scoured sandy shelf banks, ruggedly eroded slope canyons and muddy deep sea plains. In this presentation, we assess the types of benthic habitats across the East Antarctic region, and then determine how well the proposed MPA network represents the diversity of habitats across this margin. The diversity of physical environments within the proposed MPAs suggests that they likely support a diverse range of benthic communities which are broadly representative of the surrounding region.
-
ESRI Grids of available bathymetry within the bounds of proposed Marine Protected Areas in the Antarctic. Interpolated datasets are also included.
-
This report provides background information about the Ginninderra controlled release Experiment 2 including a description of the environmental and weather conditions during the experiment, the groundwater levels and a brief description of all the monitoring techniques that were trialled during the experiment. Release of CO2 began 26 October 2012 at 2:25 PM and stopped 21 December 2012 at 1:30 PM. The total CO2 release rate during Experiment 2 was 218 kg/d CO2. The aim of the second Ginninderra controlled release was to artificially simulate the leakage of CO2 along a line source, to represent leakage along a fault. Multiple methods and techniques were then trialled in order to assess their abilities to: - detect that a leak was present - pinpoint the location of the leak - identify the strength of the leak - monitor how the CO2 behaves in the sub-surface - assess the effects it may have on plant health Several monitoring and assessment techniques were trialled for their effectiveness to quantify and qualify the CO2 that was release. This experiment had a focus on plant health indicators to assess the aims listed above, in order to evaluate the effectiveness of monitoring plant health and the use of geophysical methods to identify that a CO2 leak may be present. The methods are described in this report and include: - soil gas - airborne hyperspectral surveys - plant health (PhenoMobile) - soil CO2 flux - electromagnetic (EM-31) - electromagnetic (EM-38) - ground penetrating radar (GPR) This report is a reference guide to describe the Ginninderra Experiment 2 details. Only methods are described in this report with the results of the study published in conference papers and future journal articles.
-
In this study, we aim to identify the most accurate methods for spatial prediction of seabed gravel content in the northwest Australian Exclusive Economic Zone. We experimentally examined: 1) whether input secondary variables affect the performance of RFOK and RFIDW, 2) whether the performances of RF, SIMs and their hybrid methods are data-specific, and 3) whether model averaging improves predictive accuracy of these methods in the study region. For RF and the hybrid methods, up to 21 variables were used as predictors. The predictive accuracy was assessed in terms of relative mean absolute error and relative root mean squared error based on the average of 100 iterations of 10-fold cross validation. In this study, the following important findings were achieved: - the predictive errors fluctuate with the input secondary variables; - the existence of correlated variables can alter the results of model selection, leading to different models; - the set of initial input variables affects the model selected; - the most accurate model can be missed out during the model selection; - RF, RFOK and RFIDW prove to be the most accurate methods in this study, with RFOK preferred; and these methods are not data-specific, but their models are, so best model needs to be identified; and - Model averaging is clearly data-specific. In conclusion, model selection is essential for RF and the hybrid methods. RF and the hybrid methods are not data-specific, but their models are. RFOK is the most accurate method. Model averaging is also data-specific. Hence best model needs to be identified for individual studies and application of model averaging should also be examined accordingly. RF and the hybrid methods have displayed substantial potentials for predicting environmental properties and are recommended for further test for spatial predictions in environmental sciences and other relevant disciplines in the future. This study provides suggestions and guidelines for improving the spatial predictions of biophysical variables in both marine and terrestrial environments.
-
A compilation of grainsize, biogenic silica and carbonate data from East Antarctic surface sediments
Sediment grainsize and compositional data is presented for the East Antarctic region (30-150ºE) south of 60ºS to provide insight into the nature of habitats available for benthic communities. This compilation of sedimentary properties incorporates data collected and analysed from the 1950s to 2012. Sediment grainsize data is presented from quantitative analyses (472 samples) and Folk classifications (an additional 192 samples), and composition data is presented for calcium carbonate (255 samples) and biogenic silica (304 samples). Sedimentary properties are a key environmental layer for understanding the nature and diversity of benthic habitats. In this report, sediment grainsize and composition data are overlain on maps of bathymetry and geomorphic features, to further illustrate key variations in seabed habitats. The Antarctic shelf is typically dissected by deep troughs and channels, and these form sediment depocenters for fine grained biosiliceous material. Shelf banks, by contrast, are typically composed of coarser sands and gravels due to their exposure to stronger currents and frequent iceberg scouring. The continental slope is heavily eroded into rugged canyons which also contain coarser sediments due to reworking by down slope processes. In several regions, high carbonate content occurs at the shelf break, associated with areas of known hydrocoral occurrence. These variations in physical properties across the Antarctic shelf and slope create distinct habitats for seabed communities. Maps of sediment type, together with broader-scale maps of geomorphic features, can therefore guide understanding of the nature and distribution of seabed habitats in East Antarctica, and particularly within the seven proposed Marine Protected Areas (MPAs) within this region. Sedimentary and geomorphic properties are shown to be highly variable within these MPAs, indicating that these areas likely support a wide variety of benthic communities.
-
To date, a range of methods have been developed and applied to the processing and analysis of underwater video and imagery, in part driven by different requirements. For example, in Australia, the marine science community who are partnered by the National Environmental Research Program (NERP) and funded by the Marine Biodiversity Hub, has developed a national CATAMI (Collaborative and Automated Tools for Analysis of Marine Imagery and video) scheme. Technological advances in recent years have improved the usability and output quality of underwater video and still images used to identify and monitor underwater habitats and structures and as a result, these techniques are more frequently applied to marine studies. So far, a comprehensive review of underwater video and still imagery processing/analysis methods has not been completed, although the number of studies utilising underwater stills and video has increased dramatically. Difficulties in diver limitation and stringent regulations applied to the collection of diver-based imagery and video data from underwater benthic habitats. Therefore, remote sensing methods such as underwater video and still imagery are becoming increasingly pivotal for ground-truthing benthic biological and physical habitats in shallow and deep marine and freshwater habitats and are also providing a permanent archive for future analyses. This review focuses on post-processing observational methods used for underwater video and still image habitat classification and quantification. We summarise the main applications, advantages and disadvantages of video and still imagery scoring methods, and illustrate recent advances in this topic.
-
Geoscience Australia Flyer prepared for LOCATE14.
-
Geoscience Australia's entry to the ASC2014 SPECTRUM science-art exhibition Title: Seeing Water Through Time Author: Norman Mueller Type: Science Communication image Description: The WOfS, Water Observations from Space, image is a colour-scale of how many times water was detected from the Landsat 5 and 7 satellites over central Australia from 1998 to 2012. The colours range from very low number of times (red) to very high number of times (blue), using a standard rainbow colour scheme (red-orange-yellow-green-blue). This means that red areas are hardly ever wet while blue areas are more permanent water features like lakes. The area covered includes Lake Eyre (at left) Cooper Creek (right of centre) to the Paroo River (bottom right).
-
Geoscience Australia defines a borehole as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally, and would include Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. For the purpose of a borehole as defined by GeoSciML Borehole 3.0, the dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.