From 1 - 10 / 99
  • A late Quaternay, current-lain sediment drift deposit over 30 metres in thickness has been discovered on the continental shelf of East Antarctica in an 850 metre deep glacial trough off George Vth Land. Radiocarbon dating indicates that a period of rapid deposition on the drift occurred in the mid-Holocene, between about 3 000 and 5 000 years before present.

  • The stability of floating ice shelves is an important indicator of ocean circulation and ice-shelf mass balance. A sub-ice -shelf sediment core collected during the Austral summer of 2000-2001 from site AM02 on the Amery Ice Shelf, East Antarctica, contains a full and continuous record of glacial retreat.

  • The East Antarctic continental shelf has had very few studies examining the macrobenthos structure or relating biological communities to the abiotic environment. In this study, we apply a hierarchical method of benthic habitat mapping to Geomorphic Unit and Biotope levels at the local (10s of kilometers) scale across the George V Shelf between longitudes 1421E and 1461E. We conducted a multi-disciplinary analysis of seismic profiles, multibeam sonar, oceanographic data and the results of sediment sampling to define geomorphology, surficial sediment and near-seabed water mass boundaries.

  • This report contains an interpretation of the geological framework of the continental margin off the AAT based on data recorded by the Australian Antarctic and Southern Ocean Profiling Project in 2001 and 2002.

  • Several grounding zone wedges were left on the floor and flanks of Prydz Channel in western Prydz Bay by the Lambert Glacier during the last glacial cycle. Seismic profiles indicate that vertical accretion at the glacier bed was the most important depositional process in forming the wedges, rather than progradation by sediment gravity flows. Sidescan sonographs reveal extensive development of flutes on the sea floor inshore from the wedges, indicating deformable bed conditions beneath the ice. The region inshore of the east Prydz Channel wedge features extensive dune fields formed by currents flowing towards the grounding zone. This orientation is consistent with models of circulation beneath ice shelves in which melting at the grounding line generates plumes of fresher water that rise along the base of the ice shelf, entraining sea water into a circulation cell. The Lambert Deep is surrounded by a large composite ridge of glacial sediments. Internal reflectors suggest formation mostly by subglacial accretion. The sea floor in the Lambert Deep lacks dune fields and shows evidence of interspersed subglacial cavities and grounded ice beneath the glacier. The absence of bedforms reflects sea floor topography that would have inhibited the formation of energetic melt water-driven circulation.

  • Lithostratigraphy, grain sizes and down-hole logs of Site 1166 on the continental shelf, and Site 1167 on the upper slope, are analyzed to reconstruct glacial processes in eastern Prydz Bay and the development of the Prydz trough-mouth fan. In eastern Prydz Bay upper Pliocene-lower Pleistocene glaciomarine sediments occur interbedded with open-marine muds and grade upward into waterlaid tills and subglacial tills. Lower Pleistocene sediments of the trough-mouth fan consist of coarse-grained debrites interbedded with bottom-current deposits and hemipelagic muds, indicating repeated advances and retreats of the Lambert Glacier-Amery Ice Shelf system with respect to the shelf break. Systematic fluctuations in lithofacies and down-hole logs characterize the upper Pliocene-lower Pleistocene transition at Sites 1166 and 1167 and indicate that an ice stream advanced and retreated within the Prydz Channel until the mid Pleistocene. The record from Site 1167 shows that the grounding line of the Lambert Glacier did not extend to the shelf break after 0.78 Ma. Published ice-rafted debris records in the Southern Ocean show peak abundances in the Pliocene and the early Pleistocene, suggesting a link between the nature of the glacial drainage system as recorded by the trough-mouth fans and increased delivery of ice-rafted debris to the Southern Ocean.

  • Dense coral-sponge communities on the upper continental slope (570 - 950 m) off George V Land, east Antarctica have been identified as Vulnerable Marine Ecosystems. We propose three main factors governing their distribution on this margin: 1) their depth in relation to iceberg scouring; 2) the flow of organic-rich bottom waters; and 3) their location at the head of shelf cutting canyons. Icebergs scour to 500 m in this region and the lack of such disturbance is a likely factor allowing the growth of rich benthic ecosystems. In addition, the richest communities are found in the heads of canyons which receive descending plumes of Antarctic Bottom Water formed on the George V shelf, which could entrain abundant food for the benthos. The canyons harbouring rich benthos are also those that cut the shelf break. Such canyons are known sites of high productivity in other areas due to strong current flow and increased mixing with shelf waters, and the abrupt, complex topography.

  • Within the general trend of post-Eocene cooling, the largest and oldest outlet of the East Antarctic Ice Sheet underwent a change from ice-cliff to ice-stream and/or ice-shelf dynamics, with an associated switch from line-source to fan sedimentation. Available geological data reveal little about the causes of these changes in ice dynamics during the Miocene Epoch, or the subsequent effects on Pliocene-Pleistocene ice-sheet history. Ice-sheet numerical modeling reveals that bed morphology was probably responsible for driving changes in both ice-sheet extent and dynamics in the Lambert-Amery system at Prydz Bay. The modeling shows how the topography and bathymetry of the Lambert graben and Prydz Bay control ice-sheet extent and flow. The changes in bathymetric volume required for shelf-edge glaciation correlate well with the Prydz Channel fan sedimentation history. This suggests a negative feedback between erosion and glaciation, whereby the current graben is overdeepened to such an extent that shelf-edge glaciation is now not possible, even if a Last Glacial Maximum environment recurs. We conclude that the erosional history of the Lambert graben and Prydz Bay in combination with the uplift histories of the surrounding mountains are responsible for the evolution of this section of the East Antarctic Ice Sheet, once the necessary initial climatic conditions for glaciation were achieved at the start of the Oligocene Epoch.

  • This is an online GIS application of Antarctica

  • Numerical models are the primary predictive tools for understanding the dynamic behavior of the Antarctic ice sheet. But a key boundary parameter - the magnitude of sub-glacial heat flow - is controlled by geological factors and remains poorly constrained. We show that variations in the abundance and distribution of heat-producing elements (U, Th and K) within the Antarctic continental crust give rise to regional sub-glacial heat flows as much as 2-3 times greater than previously assumed in many ice modeling studies. Such elevated heat flows would fundamentally impact on ice sheet behaviour and predict higher regional basal melt production, enhanced ice surging and streaming. We also recognize that, prior to the breakup of Gondwana, much of the East Antarctic continental crust was contiguous with southern Australia where extensive high heat-producing Proterozoic-aged rocks, and correspondingly elevated regional heat flows, are well documented and such crustal rocks almost certainly extend beneath the modern east Antarctic ice sheet. Such fundamental geological controls on sub-glacial heat flow must be considered in accurately modeling ice dynamics, permitting more refined predictions of ice mass balance and sea level change and is a particularly relevant issue in the context of anthropogenic climate change.