Authors / CoAuthors
Carson, C.J. | McLaren, S. | Roberts, J. | Boger, S.D. | Blankenship, D.
Abstract
Numerical models are the primary predictive tools for understanding the dynamic behavior of the Antarctic ice sheet. But a key boundary parameter - the magnitude of sub-glacial heat flow - is controlled by geological factors and remains poorly constrained. We show that variations in the abundance and distribution of heat-producing elements (U, Th and K) within the Antarctic continental crust give rise to regional sub-glacial heat flows as much as 2-3 times greater than previously assumed in many ice modeling studies. Such elevated heat flows would fundamentally impact on ice sheet behaviour and predict higher regional basal melt production, enhanced ice surging and streaming. We also recognize that, prior to the breakup of Gondwana, much of the East Antarctic continental crust was contiguous with southern Australia where extensive high heat-producing Proterozoic-aged rocks, and correspondingly elevated regional heat flows, are well documented and such crustal rocks almost certainly extend beneath the modern east Antarctic ice sheet. Such fundamental geological controls on sub-glacial heat flow must be considered in accurately modeling ice dynamics, permitting more refined predictions of ice mass balance and sea level change and is a particularly relevant issue in the context of anthropogenic climate change.
Product Type
nonGeographicDataset
eCat Id
75821
Contact for the resource
Resource provider
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- Place and Communities
Keywords
-
- External PublicationAbstract
- ( Theme )
-
- geothermal
- ( Theme )
-
- Antarctic data
-
- AQ
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2013-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-90.0, -60.0, 45.0, 160.0]
Reference System
Spatial Resolution
Service Information
Associations
Source Information
Source data not available.