Authors / CoAuthors
Sayers, J. | Marsh, C. | Scott, A. | Cinar, Y. | Bradshaw, J.
Abstract
Assessment and Sensitivity Considerations of a Potential Storage Site for Carbon Dioxide A Queensland Case Study Sayers, J.1, Marsh, C.1, Scott, A.1, Cinar, Y.2, Bradshaw, J.1, Hennig, A.3, Barclay, S.4 and Daniel, R.5 Cooperative Research Centre for Greenhouse Gas Technologies 1 Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 2 School of Petroleum Engineering, University of New South Wales, Sydney NSW 2052, Australia 3 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Petroleum, PO Box 1130, Bentley, WA 6102, Australia 4 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Petroleum, PO Box 136, North Ryde, NSW 1670, Australia 5 Australian School of Petroleum, Santos Petroleum Engineering Building, University of Adelaide, SA 5005, Australia ABSTRACT Australia's coal-fired power plants produce about 70% of the nation's total installed electricity generation capacity and emit about 190 million tonnes of CO2/year, of which about 44 million tonnes come from central and southeast Queensland. A multi-disciplinary study has identified the onshore Bowen Basin as having potential for geological storage of CO2. Storage potential has been documented within a 295 km2 area on the eastern flank of the Wunger Ridge using a simplified regional 3-D model, and is based on estimating injection rates of 1.2 million tonnes CO2/year for 25 years. Paleogeographic interpretations of the Showgrounds Sandstone reservoir in the targeted injection area indicate a dominantly meandering channel system that grades downdip into a deltaic system. Seismic interpretation indicates a relatively unfaulted seal and reservoir section. The depth to the reservoir extends to 2700 m. CO2 injection simulations indicate that at least one horizontal or two vertical wells would be required to inject at the proposed rate into homogeneous reservoirs with a thickness of approximately 5 m and permeability of 1 darcy. The existence of intra-reservoir shale baffles necessitates additional wells to maintain the necessary injection rate: this is also true for medium-permeability reservoirs. The long-term storage of the injected CO2 involves either stratigraphic and residual gas trapping along a 10 to 15 km migration path, and ultimately, potentially, within updip depleted hydrocarbon fields; or trapping in medium-permeability rocks. Trapping success will be a function of optimal reservoir characteristics including specific permeability ranges and the distribution of seals and baffles. Sensitivity analysis of CO2 injectivity indicates that dissolution effects may increase injection rates by up to 20 %.
Product Type
nonGeographicDataset
eCat Id
64012
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- ( Theme )
-
- carbon dioxide
- ( Theme )
-
- geological storage of CO2
-
- AU-QLD
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2006-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-29.0, -26.0, 148.0, 152.0]
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.