Authors / CoAuthors
Murdie, R. | Gessner, K. | Miller, M. | Salmon, M. | Yuan, H. | Whitney, J. | Gray, S. | Allen, T.
Abstract
The Geological Survey of Western Australia, in collaboration with the Australian National University, Macquarie University, the Department of Fire and Emergency Services and Geoscience Australia has just installed the first seismometers of an array across the South West Seismic Zone of Western Australia. This region is one of the most seismically active areas of Australia having experienced over 2000 small (between ML 2 to 3) earthquakes since the year 2000. Many smaller events are also noted by the local people who often hear them coming. Yes – hear them coming – this area is known for its “noisy” earthquakes. Most of these earthquakes occur in swarms rather than main shock-aftershock sequences (Dent, 2015). This means that the region experiences a lot of small earthquakes, all much the same size and which occur in a similar area. These swarms can be active for years. The hazard associated with these seismic events is relatively small. However, in the past six decades this region has also hosted five of the nine surface rupturing earthquakes in Australia, most notably; Meckering (M 6.5) in 1968 from which there are photos of the bends in the railway lines (Fig 1a) and faulting of 2-3 m in height across the fields (Fig 1b) (Gordon and Lewis 1980; Johnston and White 2018, Clark and Edwards 2018); Calingiri (M5.9) in 1970 and Lake Muir (M5.6), which was felt by a lot of people across Western Australia just two years ago (Clark et al. 2020). Despite the high rates of seismicity, seismic monitoring in the region remains relatively sparse. To overcome this lack of instrumentation, the consortium of institutions mentioned above, came together for an ARC Linkage project to put in place a temporary network- the South West Australia Network (SWAN) - to improve the monitoring and detection capabilities in this area. This project will see a total of twenty-five broadband seismometers deployed across the Southwest of Western Australia for a period of approximately 2 years (Fig 2a and b). This temporary array will enable the detection and location of smaller-magnitude earthquakes which can be used to improve the crustal velocity models which in turn enables more accurate earthquake locations and helps the understanding of the crustal structure of this part of Australia. Better velocity models also enable better magnitude calculation methods, which improve the knowledge about recurrence of earthquakes of a certain magnitude. From a seismic hazard point of view, this data has the potential to assist in the development of improved methods for modelling how shaking intensity varies as it propagates through the earth’s crust from the earthquake source. Overall, this information will feed into an improved understanding of the earthquake hazard in the Southwest region of Western Australia. For local communities, it will provide an improved situational awareness following significant earthquakes. More broadly, the improved understanding of the seismicity of the Southwest of Western Australia will enhance emergency response capabilities, and inform building codes and mitigation initiatives, which are the best methods we have to minimise the earthquake risks to communities. Data will be released through AusPASS, the Australian Passive Seismic Server two years after the last data has been collected.
Product Type
document
eCat Id
144331
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
Resource provider
Keywords
- theme.ANZRC Fields of Research.rdf
-
- Seismology and Seismic ExplorationEARTH SCIENCESEarthquake EngineeringNatural Hazards
-
- Published_External
Publication Date
Creation Date
Security Constraints
Legal Constraints
Status
completed
Purpose
Maintenance Information
notPlanned
Topic Category
geoscientificInformation
Series Information
Lineage
Not supplied.
Parent Information
Extents
[-35.00, -30.30, 115.50, 119.70]
Reference System
Spatial Resolution
Service Information
Associations
Source Information