From 1 - 10 / 28
  • The Greater Metro Manila Area is one of the world's megacities and is home to about 12 million people. It is located in a region at risk from earthquakes, volcanic eruptions, tropical cyclones, riverine flooding, landslides and other natural hazards. Major flooding affected the Greater Metro Manila Area in September 2009 following the passage of Typhoon Ketsana (known locally as Typhoon Ondoy). Following this event, the Australian Aid Program supported Geoscience Australia to undertake a capacity building project with its partner agencies in the Government of the Philippines. The output of this project has been a series of risk information products developed by agencies in the Collective Strengthening of Community Awareness for Natural Disasters (CSCAND) group. These products quantify the expected physical damage and economic loss to buildings caused by earthquakes, tropical cyclone severe wind and riverine flooding across the Greater Metro Manila Area. Spatial data is a key input to the development of hazard models and information on exposure, or the 'elements at risk'. The development of a spatially enabled exposure database was a crucial element in the construction of risk information products for the Greater Metro Manila Area. The database provides one central repository to host consistent information about the location, size, type, age, residential population and structural characteristics of buildings within the area of interest. Unique spatial analysis techniques were employed to quantify and record important aspects of the built environment, for inclusion in the database. The process of exposure data development within the Greater Metro Manila Area, including a new application developed by Geoscience Australia for estimating the geometric characteristics of buildings from high resolution elevation data and multi-spectral imagery, will be presented.

  • On 6th July 2006, an intense swarm of earthquake activity began in the Sulu Range, Central New Britain, Papua New Guinea. The earthquakes were felt almost every one to two minutes, 24 hours a day, with modified Mercalli intensities of MM1 to MM4. They were accompanied by unusual vigorous activity in the hot springs southwest of the Sulu Range. Fearing a possible eruption and tsunami, about 1000 locals were evacuated.

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • Many earthquakes in Indonesia have caused a large number of fatalities. Disaster risk-reduction of fatalities requires a representative fatality model derived from fatality data caused by historical earthquakes in Indonesia. We develop an empirical fatality model for Indonesia by relating macroseismic intensity to fatality rate using compiled subdistrict level fatality rate data and numerically simulated ground shaking intensity for four recent damaging events. The fatality rate data are compiled by collecting population and fatality statistics of the regions impacted by the selected events. The ground shaking intensity is numerically estimated by incorporating a finite fault model of each event and local site conditions approximated by topographically-based site amplifications. The macroseismic intensity distribution of each event is generated by using ShakeMap software with a selected pair of ground motion predictive equation (GMPE) and ground motion to intensity conversion equation (GMICE). The developed fatality model is a Bayesian generalized linear model where the fatality rate is assumed to follow a mixture of a Bernoulli and a gamma distribution. The probability of zero fatality rate and the mean non-zero fatality rate is linked to a linear function of shaking intensity by the logit and the log link functions, respectively. We estimate posterior distribution of the parameters of the model based on the Hamilton Monte Carlo algorithm. For validation of the developed model we calculate fatalities of the past events from the EXPO-CAT catalog and compare the estimates with the EXPO-CAT fatality records. While the developed fatality model can provide an estimate of the range of fatalities for future events it needs on-going refinement by incorporation of additional fatality rate data from past and future events.

  • Natural Hazards and Earth Systems Science

  • The Papua New Guinea (PNG) region has been formed within an oblique convergence zone between the north-northeasterly moving Australian plate and the Pacific plate. The region is subject to most types of tectonic activity, including active folding, faulting and volcanic eruptions and hence is arguably one of the most seismically active regions in the world. Given its high level of seismic activity, PNG would benefit from a dense monitoring network to enhance the efficiency of the earthquake emergency response operations. A program to densify the earthquake monitoring network of PNG by utilizing low-cost sensors has been developed by Geoscience Australia in collaboration with the Department of Mineral Policy and Geohazards Management in PNG. To verify the performance, trial low-cost sensors were co-located with observatory-quality instrumentation for a period of one month in Port Moresby and Rabaul observatories. The comparisons demonstrated comparable recording results across a wide seismic frequency range. Once this proved successful, the first deployments were undertaken recently, with sensors installed in the Bialla International School, Kimbe International School and the Earth Science Division of the University of PNG. Educational institutions are ideal for the installation of these sensors as they can provide guaranteed internet and electricity, allowing for continuous monitoring of earthquakes. The data acquired by these stations will feed into the existing networks for national earthquake and volcano monitoring, thus expanding the national seismic network of PNG. This work is being undertaken as part of the Australian Aid program. Presented at the 2020 Seismological Society of America (SSA) Annual Meeting

  • Heterogeneous distribution of slip during megathrust earthquakes has been shown to significantly affect the spatial distribution of tsunami height in both numerical studies and field observations. This means that tsunami hazard maps generated using uniform slip distributions in their tsunami source models may underestimate tsunami inundation in some locations compared with real events of the same magnitude in the same location. In order to more completely define areas that may be inundated during a tsunami it is important to consider how different possible distributions of slip will impact different parts of the coastline. We generate tsunami inundation maps for the Mentawai Islands, West Sumatra, Indonesia, from a composite suite of possible source models that are consistent with current knowledge of the source region. First, a suite of earthquake source models with randomly distributed slip along the Mentawai Segment of the Sunda Subduction Zone is generated using a k-2 rupture model. From this suite we select source models that generate vertical deformation consistent with that observed in coral palaeogeodetic records of previous ruptures of the Mentawai Segment in 1797 and 1833, minus deformation observed in the 2007 Bengkulu earthquake sequence. Tsunami inundation is then modelled using high resolution elevation data for selected source models and the results compiled to generate a maximum tsunami inundation zone. This method allows us to constrain the slip distribution beneath the Mentawai Islands, where coral palaeogeodetic data is available, while allowing for greater variation in the slip distribution away from the islands, in particular near the trench where large slip events can generate very large tsunami. This method also allows us to consider high slip events on deeper portions of the megathrust between the Mentawai Islands and the Sumatran Mainland, which give greater tsunami inundation on the eastern part of the Mentawai Islands and the west coast of Sumatra compared with near-trench event. By accounting for uncertainty in slip distribution, the resulting hazard maps give a more complete picture of the areas that may be inundated compared with hazard maps derived from a single 'worst case' source model. These maps allow for more robust tsunami evacuation plans to be developed to support immediate community evacuation in response to strong or long-lasting earthquake ground shaking. From the American Geophysical Union Fall Meeting Abstracts

  • Hot emissions of mainly sulphur dioxide and carbon dioxide took place from a mound in Koranga open cut, near Wau, following a landslide at the end of May, 1967. Rocks of the Holocene volcano, Koranga, are exposed in the open cut. The emissions lasted about three months, and ceased on 13 August after another landslide removed the active mound. During the period of activity, recorded temperatures ranged up to 680°C; no anomalous seismic or tilt phenomena were recorded. The cause of the activity is not known, but it is thought that the high temperatures and gases may have been the result of the spontaneous combustion of reactive sulphides and carbonaceous material present in the altered rocks of Koranga volcano.

  • Tsunami hazard maps are generated for the Mentawai Islands, West Sumatra, Indonesia, to support evacuation and disaster response planning. A random heterogeneous slip generator is used to forward model a suite of earthquake rupture scenarios on the Mentawai Segment of the Sunda Subduction Zone. A total of 1000 rupture models that fit constraints provided by coral and geodetic records of coseismic vertical deformation from great earthquakes in 1797, 1833 and 2007 are used to model inundation and define a maximum inundation zone that envelopes all of these scenarios. Results are compared with single scenario hazard assessments developed by experts and agreed through scientific consensus building processes to assess the additional value of modelling a suite of scenarios to obtain a more robust estimate of potential inundated areas by incorporating uncertainty in the earthquake source. The model presented here, like all tsunami hazard assessments, is based on assumptions about the characteristics of future events based on past events, however by sampling a range of plausible outcomes we gain a more robust estimate of which areas may be inundated during a tsunami within the bounds of our assumptions.

  • The Government of Indonesia has committed to deploying a network of 500 strong-motion sensors throughout the nation. The data from these sensors have the potential to provide critical near-real-time information on the level of ground shaking and potential impact from Indonesian earthquakes near communities. We describe the implementation of real-time ‘ShakeMaps’ within Indonesia's Agency of Meteorology, Climatology and Geophysics (BMKG). These ShakeMaps are intended to underpin real-time earthquake situational awareness tools. The use of the new strong-motion network is demonstrated for two recent earthquakes in northern Sumatra: the 2 July 2013 Mw 6.1 Bener Meriah, Sumatra and the 10 October 2013 Mw 5.4 Aceh Besar earthquakes. The former earthquake resulted in 35 fatalities, with a further 2400 reported injuries. The recently integrated ShakeMap system automatically generated shaking estimates calibrated by BMKG's strong-motion network within 7 min of the Bener Meriah earthquake's origin, which assisted the emergency response efforts. Recorded ground motions are generally consistent with theoretical models. However, more analysis is required to fully characterize the attenuation of strong ground motion in Indonesia.