From 1 - 3 / 3
  • This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mary Kathleen Domain, which forms the western part of the Eastern Fold Belt in the Mount Isa Inlier. Eight samples, comprising three granites, one quartz diorite, two metarhyolites, one feldspathic quartzite, and one of matrix material from a breccia, have been analysed as part of ongoing investigations by GSQ in collaboration with researchers from James Cook University. The results enable a better understanding of the evolution of the domain, the associated magmatism, and any related mineralisation. <b>Bibliographic Reference:</b> Kositcin, N., Bultitude, R.J., and Purdy, D.J. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain, Mount Isa Inlier, 2018–2019. <i>Queensland Geological Record</i><b> 2019/02</b>.

  • This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mount Isa Inlier and covered areas to the east. The Mary Kathleen Domain is the focus of this work and 11 metasedimentary and igneous samples were analysed from across the distribution of the domain. An additional two metasedimentary samples and one igneous sample from drill cores located east of the outcropping Mount Isa Province were also analysed. <b>Bibliographic Reference: </b>Kositcin, N., Purdy, D.J., Bultitude, R.J., Brown, D.D. & Hoy, D. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain and rocks under younger cover east of the Mount Isa Inlier, 2019–2020. <i>Queensland Geological Record</i><b> 2021/01</b>.

  • An important finding of this study is the presence of Williams-Naraku Batholith ages (i.e. ca 1500 Ma) east and (well) north of the currently known extent. Sample 2804770/DPMI013 is a leucocratic biotite granite collected from unnamed unit PLg/k ca 30 km southwest of Burke and Wills Roadhouse at the far northern outcropping extent of the Mary Kathleen Domain. This unit intrudes the Corella Formation and Boomarra Metamorphics as small pods and dykes that likely represent the upper portions of a larger pluton. The results from this sample are complex but indicate a minimum crystallisation age of 1500 ± 6 Ma. This is within error of units assigned to the Williams and Naraku Batholiths (e.g. Mavis Granodiorite, Malakoff Granite, Wimberu Granite – see geochronology compilation of Jones et al., 2018). A similar but more certain age of 1511 ± 4 Ma was determined for an unnamed amphibole granite farther south near Kajabbi (2804772/DPMI049b). It is likely that this intrusion also represents the upper parts of a pluton that is more extensive at depth. Together, these two new ages greatly expand the known extent of magmatism at ca 1500 Ma. The Mount Godkin Granite forms a prominent, topographically high range ca 45km northwest of Cloncurry. It intrudes the Corella Formation and has a distinct ellipsoid mapped extent. On the basis of geochemistry, Budd et al. (2001) included the Mount Godkin Granite in the Burstall Suite. The crystallisation age reported here (1739 ± 3 Ma) for sample 2804771/DPMI041 is within error of the most recent published ages from the Burstall Granite and Lunch Creek Gabbro (i.e. 1740 ± 3 Ma, 1737 ± 3 Ma, 1739 ± 3 Ma; Neumann et al., 2009) confirming broadly synchronous emplacement. We also sampled a fine-grained, leucocratic and miarolitic biotite granite from the far northern tip of the Burstall Granite (mapped as subunit l). Despite being lithologically and texturally distinct from the main body of Burstall Granite, this sample (2804773/DPMI054) yielded a similar crystallisation age (1736 ± 4 Ma) to the main Burstall Granite and Lunch Creek Gabbro bodies (Neumann et al., 2009). A lithologically similar, unfoliated, miarolitic leucogranite was sampled from Exco Resources drill core EMCDD094 (534.85–536.07 m) at Mount Colin mine near the contact between the Burstall Granite and Corella Formation. In drill core, this granite contains large xenoliths of Corella Formation and locally transitions to a crystallised hydrothermal phase. It appears intimately associated with copper mineralisation and the crystallisation age of 1737 ± 3 Ma determined here (2804792/DPMI080) may be similar to the mineralisation age. The Myubee Igneous Complex and Overlander Granite intrude the Corella Formation in the southern part of the Mary Kathleen Domain. They were thought to have been emplaced at about the same time as the nearby Revenue Granite, the Mount Erle Igneous Complex farther south, and the Burstall Granite to the north, based on lithological and chemical similarities (e.g., Bultitude et al., 1978, 1982; Blake et al., 1984). These last three units have yielded U–Pb zircon (SHRIMP) ages in the 1735–1740 Ma range (Neumann et al., 2009; Geoscience Australia, 2011; Kositcin et al., 2019). However, Bierlein et al. (2011) reported slightly younger SHRIMP zircon emplacement ages in the 1718–1722 Ma range for parts of the Revenue Granite and Mount Erle Igneous Complex, suggesting the units are composite. The 1740 ± 5 Ma age yielded by the Overlander Granite as part of the current study is similar to ages recorded for the units listed above and, therefore, supports the interpretations of earlier workers. The granite is associated spatially with several small Cu–Au deposits in nearby country rocks (Corella Formation) including the Overlander group of mines (abandoned) and prospects, and the Andy’s Hill (Cu–Au–Co–La) and Scalper (Cu–Au) prospects (Denaro et al., 2003), but a genetic relationship between the granite and mineralisation has yet to be unequivocally demonstrated. Granite of the Myubee Igneous Complex yielded a slightly younger age of 1727 ± 5 Ma. We interpret this as a minimum age for igneous crystallisation of the granite, because most of the SHRIMP zircon analyses preserve evidence of post-crystallisation isotopic disturbance. However, it does support the conclusion of Passchier (1992) who deduced that the Myubee Igneous Complex is slightly younger than the nearby Revenue Granite, based on structural criteria. According to Passchier D1 (local) structures in the Revenue Granite are not present in the Myubee Igneous Complex. The significance of the anomalously young SHRIMP, zircon age of 1722 ± 5 Ma subsequently reported by Bierlein et al. (2011) for the Revenue Granite has yet to be resolved. The dated sample of Wimberu Granite is from a relatively small lobe, separated from the main outcrop area to the east by an extensive cover of younger Georgina Basin rocks. The lobe is located ~11 km east of the Pilgrim Fault Zone, which marks the eastern boundary of the Mary Kathleen Domain. The analysed sample yielded a U–Pb zircon age of 1518 ± 5 Ma, which is similar to the U–Pb (SHRIMP) zircon ages reported previously for different parts of the main body of Wimberu Granite east of Devoncourt homestead—namely 1508 ± 4 Ma (Page & Sun, 1998) and 1512 ± 4 (Pollard & McNaughton, 1997). <b>Bibliographic Reference: </b>Bodorkos, S., Purdy, D.J., Bultitude, R.J., Lewis, C.J., Jones, S.L., Brown, D.D. and Hoy, D., 2020. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain and Environs, Mount Isa Inlier, 2018–2020. <i>Queensland Geological Record</i><b> 2020/04</b>.