Environmental Sciences
Type of resources
Keywords
Publication year
Service types
Topics
-
Wind multipliers are factors that transform regional wind speeds into local wind speeds, accounting for the local effects which include topographical, terrain and shielding influences. Wind multipliers have been successfully utilized in various wind related activities such as wind hazard assessment (engineering building code applications), event-based wind impact assessments (tropical cyclones), and also national scale wind risk assessment. The work of McArthur in developing the Forest Fire Danger Index (FFDI: Luke and McArthur, 1978) indicates that the contribution of wind speed to the FFDI is about 45% of the magnitude, indicating the importance of determining an accurate local wind speed in bushfire hazard and spread calculations. For bushfire spread modeling, local site variation (@ 100 metre and also 25 metre horizontal resolution) have been considered through the use of wind multipliers, and this has resulted in a significant difference to the currently utilized regional '10 metre height' wind speed (and further to the impact analysis). A series of wind multipliers have been developed for three historic bushfire case study areas; the 2009 Victorian fires (Kilmore fire), the 2005 Wangary fire (Eyre Peninsula), and the 2001 Warragamba - Mt. Hall fire (Western Sydney). This paper describes the development of wind multiplier computation methodology and the application of wind multipliers to bushfire hazard and impact analysis. The efficacy of using wind multipliers within a bushfire spread hazard model is evaluated by considering case study comparisons of fire extent, shape and impact against post-disaster impact assessments. The analysis has determined that it is important to consider wind multipliers for local wind speed determination in order to achieve reliable fire spread and impact results. From AMSA 2013 conference
-
Geoscience Australia defines a sample as a feature observed, measured or collected in the field. A specimen is a physical individual sample collected during the field work. This data set represents a subset of all Sampling data held by Geoscience Australia that have been collected as part of drilling activities (ie relate to Australian Boreholes). The data will be utilised by other data domains by providing Sampling context to various Observation & Measurement data.
-
An integrated analysis of geoscience information and benthos data has been used to identify benthic biotopes (seafloor habitats and associated communities) in the nearshore marine environment of the Vestfold Hills, East Antarctica. High-resolution bathymetry and backscatter data were collected over 42km2 to depths of 215 m using a multibeam sonar system. Epibenthic community data and in situ observations of seafloor morphology, substrate composition and bedforms were obtained from towed underwater video. Analysis of the datasets was used to identify statistically distinct benthic assemblages and describe the physical habitat characteristics related to each assemblage, with seven discrete biotopes identified. The biotopes include a range of habitat types including shallow coastal embayments and rocky outcrops which are dominated by dense macroalgae communities, and deep muddy basins which are dominated by mixed invertebrate communities. Transition zones comprising steep slopes provide habitat for sessile invertebrate communities. Areas of flat sandy plains are relatively barren. The relationship between benthic community composition and environmental parameters is complex with many variables (e.g. depth, substrate type, longitude, latitude and slope) contributing to differences in community composition. Depth and substrate type were identified as the main drivers of benthic community composition, however, depth is likely a proxy for other unmeasured depth-dependent parameters such as light availability, frequency of disturbance by ice, currents and/or food availability. Sea ice cover is also an important driver and the benthic community in areas of extended sea ice cover is comprised of sessile invertebrates and devoid of macroalgae. This is the first study that has used an integrated sampling approach based on multibeam sonar and towed underwater video to investigate benthic assemblages across a range of habitats in a nearshore marine environment in East Antarctica. This study demonstrates the efficacy of using multibeam sonar and towed video systems to survey large areas of the seafloor and to collect non-destructive high-resolution data in the sensitive Antarctic marine environment. The multibeam data provide a physical framework for understanding benthic habitats and the distribution of benthic communities. This research provides a baseline for assessing natural variability and human induced change on nearshore marine benthic communities (Australian Antarctic Science Project AAS-2201), contributes to Geoscience Australia's Marine Environmental Baseline Program, and supports Australian Government objectives to manage and protect the Antarctic marine environment.
-
As part of the controlled release experiments at the Ginninderra test site, geophysical surveys have been acquired using electromagnetic techniques at a range of frequencies. The primary objective was to assess whether these could provide insight into the soil structure at the site, give guidance as to where to monitor for leakage, and provide additional information that may explain the observed sub-surface and surface CO2 migration behavior. A secondary objective was to assess whether CO2 leaks could be located based on secondary impacts such as drying of the soil profile. Ground penetrating radar surveys were taken during the second release experiment (October - December 2012). Different frequency shielded antennas were trialled in order to optimize the signal. Two surveys were conducted: one baseline survey prior to CO2 release and another during the release experiment. The GPR results show a reduction in range and clear reflections to the west indicating that clay was present. To the east we see clearer reflections from sand layers and the water table. These observations corresponded with larger scale sub-surface soil features determined from EM31 and EM38 electromagnetic surveys. Application of these geophysical surveys for CO2 leak detection and monitoring design are discussed. Paper for CO2CRC Research Symposium 2013
-
Wildfires are one of the major natural hazards facing the Australian continent. Chen (2004) rated wildfires as the third largest cause of building damage in Australia during the 20th Century. Most of this damage was due to a few extreme wildfire events. For a vast country like Australia with its sparse network of weather observation sites and short temporal length of records, it is important to employ a range of modelling techniques that involve both observed and modelled data in order to produce fire hazard and risk information/products with utility. This presentation details the use of statistical and deterministic modelling of both observations and synthetic climate model output (downscaled gridded reanalysis information) in the development of extreme fire weather potential maps. Fire danger indices such as the McArthur Fire Forest Danger Index (FFDI) are widely used by fire management agencies to assess fire weather conditions and issue public warnings. FFDI is regularly calculated at weather stations using measurements of weather variables and fuel information. As it has been shown that relatively few extreme events cause most of the impacts, the ability to derive the spatial distribution of the return period of extreme FFDI values contributes important information to the understanding of how potential risk is distributed across the continent. The long-term spatial tendency FFDI has been assessed by calculating the return period of its extreme values from point-based observational data. The frequency and intensity as well as the spatial distribution of FFDI extremes were obtained by applying an advanced spatial interpolation algorithm to the recording stations' measurements. As an illustration maps of 50 and 100-year return-period (RP) of FFDI under current climate conditions are presented (based on both observations and reanalysis climate model output). MODSIM 2013 Conference
-
The DMCii Mosaic presents a sample of imagery acquired by Geoscience Australia under CC-BY Creative Commons Attribution 3.0 Australia licence. This imagery was captured by UK2-DMC satellite between December 2011 to April 2012 and has spatial resolution of 22 metres. Spectral bands are: Band 1 NIR; Band 2 Red; Band 3 Green. The DMCii Mosaic is displayed as a Pseudo Natural Colour Image.
-
Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities - ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway).
-
Geoscience Australia has completed a re-development of Sentinel, from the infrastructure that supports the system through to the spatial technology and user-interface. These changes will allow Geoscience Australia to more easily integrate data from different platforms and sources as well as provide additional products through the Sentinel interface. The new Sentinel system was developed in consultation with stakeholders to ensure a close alignment between end-users needs and the services provided by Sentinel. This paper presents the key features of the new Sentinel.
-
This web service contains marine geospatial data held by Geoscience Australia. It includes bathymetry and backscatter gridded data plus derived layers, bathymetry coverage information, bathmetry collection priority and planning areas, marine sediment data and other derived products. It also contains the 150 m and optimal resolution bathymetry, 5 m sidescan sonar (SSS) and synthetic aperture sonar (SAS) data collected during phase 1 and 2 marine surveys conducted by the Governments of Australia, Malaysia and the People's Republic of China for the search of Malaysian Airlines Flight MH370 in the Indian Ocean. This web service allows exploration of the seafloor topography through the compilation of multibeam sonar and other marine datasets acquired.
-
This web service contains marine geospatial data held by Geoscience Australia. It includes bathymetry and backscatter gridded data plus derived layers, bathymetry coverage information, bathmetry collection priority and planning areas, marine sediment data and other derived products. It also contains the 150 m and optimal resolution bathymetry, 5 m sidescan sonar (SSS) and synthetic aperture sonar (SAS) data collected during phase 1 and 2 marine surveys conducted by the Governments of Australia, Malaysia and the People's Republic of China for the search of Malaysian Airlines Flight MH370 in the Indian Ocean. This web service allows exploration of the seafloor topography through the compilation of multibeam sonar and other marine datasets acquired.