From 1 - 10 / 38
  • The local magnitude ML 5.4 (MW 5.1) Moe earthquake on 19 June 2012 that occurred within the Australian stable continental region was the largest seismic event for the state of Victoria for more than 30 years. Seismic networks in the southeast Australian region yielded many high-quality recordings of the moderate-magnitude earthquake mainshock and its largest aftershock (ML 4.4; MW 4.3) at a hypocentral range of 10 to 480 km. The source and attenuation characteristics of the earthquake sequence are analyzed. Almost 15,000 felt reports were received following the main shock, which tripped a number of coal-fired power generators in the region, amounting to the loss of approximately 1955 megawatts of generation capacity. The attenuation of macroseismic intensities are shown to mimic the attenuation shape of Eastern North America (ENA) models, but require an inter-event bias to reduce predicted intensities. Further instrumental ground-motion recordings are compared to ground-motion models (GMMs) considered applicable for the southeastern Australian (SEA) region. Some GMMs developed for ENA and for SEA provide reasonable estimates of the recorded ground motions of spectral acceleration within epicentral distances of approximately 100 km. The mean weighted of the Next Generation Attenuation-East GMM suite, recently developed for stable ENA, performs relatively poorly for the 2012 Moe earthquake sequence, particularly for short-period accelerations.

  • Geoscience Australia has produced an Atlas of Australian earthquake scenarios (the Atlas) to support planning and preparedness operations for emergency management agencies. The Atlas provides earthquake scenarios represent realistic “worst-case” events that may impact population centres around Australia. Such scenarios may also support seismic risk assessments for critical infrastructure assets to inform remediation actions that could be taken to improve resilience to rare seismic events in Australia. The Atlas of seismic scenarios uses the underlying science and data of the 2018 National Seismic Hazard Assessment (NSHA18) to identify the magnitudes and epicentre locations of these hypothetical earthquakes. Locations and magnitudes of earthquake scenarios are based upon deaggregation of the NSHA18 hazard model. The USGS ShakeMap software is used to produce ground motion intensity fields with the shaking levels being modified by seismic site conditions mapped at a national scale. Fault sources are incorporated into the Atlas where the magnitude of a given scenario exceeds a threshold magnitude of 6.0 and where the rupture length is likely to be longer than 10 km. If a scenario earthquake is located near a known fault within the Australian Neotectonic Features database, a partial or full-length rupture is modelled along the mapped fault. The Atlas generated two scenarios for each of the160 localities across Australia. The scenarios are based on some of the most likely earthquake magnitude-distance combinations estimated at each site. Output products include shaking contours for a range of intensity measures, including peak acceleration and velocity, as well as response spectral acceleration for 0.3, 1.0 and 3.0 seconds. Also included are raster images and the associated metadata used for generating the scenarios.

  • This document reports on a Bushfire and Natural Hazards Collaborative Research Centre (BNHCRC) utilisation project that has sought to develop information on the most effective means to address York’s high risk buildings. It has also sought to develop a better understanding of the logistics that would be faced by the state emergency services and the local shire council in a rare but credible earthquake. The utilisation project is entitled “Earthquake Mitigation of WA Regional Towns: York Case Study”, and sits under the over-arching BNHCRC Project A9 “Cost-effective Mitigation Strategy Development for Building Related Earthquake Risk”. The work commenced in January 2018 and was undertaken over a two year period. It involved the University of Adelaide and Geoscience Australia as the CRC research partners, and DFES and the Shire of York as the end users. The WA DPLH has also been a participant, though not a formal BNHCRC end user. The project had the following key components:- • Develop a building, business and demographic exposure database for York with the attributes collected tailored for modelling earthquake impact and for quantifying avoided consequences in economic terms. • Examine the benefits and costs of retrofitting old URM buildings to improve the resilience of them to earthquake. This is to range in scale from individual households and businesses up to the community as a whole. • Prepare earthquake impact scenarios suitable for emergency management planning by DFES and the Shire of York.

  • The geological structure of southwest Australia comprises a rich, complex record of Precambrian cratonization and Phanerozoic continental breakup. Despite the stable continental cratonic geologic history, over the past five decades the southwest of Western Australia has been the most seismically active region in continental Australia though the reason for this activity is not yet well understood. The Southwest Australia Seismic Network (SWAN) is a temporary broadband network of 27 stations that was designed to both record local earthquakes for seismic hazard applications and provide the opportunity to dramatically improve the rendering of 3-D seismic structure in the crust and mantle lithosphere. Such seismic data are essential for better characterization of the location, depth and attenuation of the regional earthquakes, and hence understanding of earthquake hazard. During the deployment of these 27 broadband instruments, a significant earthquake swarm occurred that included three earthquakes with local magnitude (MLa) ≥ 4.0, and the network was supplemented by an additional six short-term nodal seismometers at 10 separate sites in early 2022, as a rapid deployment to monitor this swarm activity. The SWAN experiment has been continuously recording since late 2020 and will continue into 2023. These data are archived at the FDSN recognized Australian Passive Seismic (AusPass) Data center under network code 2P and will be publicly available in 2025. <b>Citation:</b> Meghan S. Miller, Robert Pickle, Ruth Murdie, Huaiyu Yuan, Trevor I. Allen, Klaus Gessner, Brain L. N. Kennett, Justin Whitney; Southwest Australia Seismic Network (SWAN): Recording Earthquakes in Australia’s Most Active Seismic Zone. <i>Seismological Research Letters </i><b>2023</b>;; 94 (2A): 999–1011. doi: https://doi.org/10.1785/0220220323

  • At its nearest, northern Australia is just over 400 km from an active convergent plate margin. This complex and unique tectonic region combines active subduction and the collision of the Sunda-Banda Arc with the Precambrian North Australian Craton (NAC) near the Timor Trough and continues through to the New Guinea Highlands. Ground-motions generated from earthquakes on these structures have particular significance for northern Australian communities and infrastructure projects, with several large earthquakes in the Banda Arc region having caused ground-shaking-related damage in the northern Australian city of Darwin over the historical period. There are very few, if any, present-day tectonic analogs where cold cratonic crust abuts a convergent tectonic margin with subduction and continent-continent collision. Ground motions recorded from earthquakes in typical subduction environments are highly attenuated as they travel through young sediments associated with forearc accretionary prisms and volcanic back-arc regions. In contrast, seismic energy from earthquakes in the northern Australian plate margin region are efficiently channelled through the low-attenuation NAC, which acts as a waveguide for high-frequency earthquake shaking. As such, it is difficult to select models appropriate to the region for seismic hazard assessments. The development of a far-field ground-motion model to support future seismic hazard assessments for northern Australia is discussed. In general, the new model predicts larger ground motions in Australia from plate margin sources than models used for the 2018 National Seismic Hazard Assessment of Australia, none of which were considered fully appropriate for the tectonic environment. Short-period ground motions are strongly dependent on hypocentral depth and are significantly higher than predictions from commonly-used intraslab ground-motion models at comparable distances. The depth dependence in ground motion diminishes with increasing spectra periods. <b>Cite this article as</b> Allen, T. I. (2021). A Far-Field Ground-Motion Model for the North Australian Craton from Plate-Margin Earthquakes, <i>Bull. Seismol. Soc. Am. </i><b> 112</b>, 1041–1059, doi: 10.1785/0120210191

  • Seismic risk assessment involves the development of fragility functions to express the relationship between ground motion intensity and damage potential. In evaluating the risk associated with the building inventory in a region, it is essential to capture ‘actual’ characteristics of the buildings and group them so that ‘generic building types’ can be generated for further analysis of their damage potential. Variations in building characteristics across regions/countries largely influence the resulting fragility functions, such that building models are unsuitable to be adopted for risk assessment in any other region where a different set of building is present. In this paper, for a given building type (represented in terms of height and structural system), typical New Zealand and US building models are considered to illustrate the differences in structural model parameters and their effects on resulting fragility functions for a set of main-shocks and aftershocks. From this study, the general conclusion is that the methodology and assumptions used to derive basic capacity curve parameters have a considerable influence on fragility curves.

  • Here we undertake a statistical analysis of local magnitudes (ML) calculated using the two real-time earthquake monitoring software platforms use by Geoscience Australia (GA) since 2005, Antelope and Seiscomp. We examine a database of just over 10 years duration, during a period in which both systems were in operation and over 4000 earthquakes were located and magnitudes estimated. We examine the consistency of both single-station and network ML estimates of both systems, with a view toward determining guidelines for combining them into a single catalogue, as well as for determining best practice in the for the estimation of local magnitudes for regions of sparse seismic networks. Once this guidance has been developed, it is the intention of GA to re-process magnitudes for all earthquakes using a consistent approach where digital data are available and can be integrated within the currently-used SeisComP system. This paper was presented at the Australian Earthquake Engineering Society 2021 Virtual Conference, Nov 25 – 26.

  • This paper explores the implementation of the Natural Resources Canada’s 5th Generation national seismic hazard model as developed for the National Building Code of Canada (NBCC), within the OpenQuake-engine. It also describes the reconciliation of the differences in hazard estimates relative to the published NBCC values, calculated using GSCFRISK. Source and ground-motion input models developed for the GSCFRISK software were translated to the OpenQuake-engine format for the hazard comparison. In order to successfully undertake this process, several adjustments to the OpenQuake code were needed to mimic the behavior of GSCFRISK. This required the development of new functions for earthquake rupture scaling and ground-motion interpolation. Hazard values estimated using the OpenQuake-engine are generally in good agreement with the 2015 NBCC national-scale hazard values, with differences less than 2-3% typically achieved. Where larger differences arise, they can be rationalized in terms of differences between the behaviours of the two software engines with respect to earthquake rupture length uncertainty and maximum ground-motion integration distance.

  • Geoscience Australia and the NSW Department of Industry undertook seismic monitoring of the NSW CSG extraction area in Camden as well as baseline monitoring in the region between 2015 and 2019. Geoscience Australia established and maintained seismic stations to identify of events of greater than ML2.0 within the CSG fields. Three new seismic stations were located near Camden CSG area with two baseline stations in North-West Sydney. This poster details the station builds and seismic monitoring of both the Camden CSG production area and the wider region during the project.

  • Geoscience Australia is currently drafting a new Australian Earthquake Hazard Map (or more correctly a series of maps) using modern methods and models. Among other applications, the map is a key component of Australia’s earthquake loading code AS1170.4. In this paper we provide a brief history of national earthquake hazard models in Australia, with a focus on the map used in AS1170.4, and provide an overview of the proposed changes for the new maps. The revision takes advantage of significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the original map was produced. These include:  Earthquake observations up to and including 2010  Improved methods of declustering earthquake catalogues and calculating earthquake recurrence  Ground-motion prediction equations (i.e. attenuation equations) based on response spectral acceleration rather than peak ground velocity, peak ground acceleration or intensity-based relations.  Revised earthquake source zones  Improved maximum magnitude earthquake estimates based on palaeoseismology  The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability The following papers in this series will address in more detail the changes to the earthquake catalogue, earthquake recurrence and ground motion prediction equations proposed for use in the draft map. The draft hazard maps themselves are presented in the final paper.