From 1 - 10 / 192
  • This record contains the raw Ground Penetrating Radar (GPR) data and scanned field notes collected on fieldwork at Adelaide Metropolitan Beaches, South Australia for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 16-19 February 2015 using a MALA ProEx GPR system with 250 MHz shielded, 100 MHz unshielded and 50 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.

  • For the first time, the distribution of seabed geomorphic features has been systematically mapped over the Australian margin. Each of 21 feature types was identified using a new, 250 m spatial resolution bathymetry model and supporting literature. The total area mapped was >8.9 million km2 and included the seabed surrounding the Australian mainland and island territories of Christmas, Cocos (Keeling), Macquarie and Norfolk Islands. Of this total, the shelf is >1.9 million km2 (21.92%), the slope >4.0 million km2 (44.80%), and the abyssal plain/deep ocean floor >2.8 million km2 (32.20%). The rise covers 97,070 km2 or 1.08% of the margin. A total of 6,702 individual geomorphic features were mapped on the Australian margin. Plateaus have the largest surface area and cover 1.49 million km2 or 16.54%, followed by basins (714,000 km2; 7.98%), and terraces (577,700 km2; 6.44%), with the remaining 14 types each making up <5%. Reefs, which total 4,172 individual features (47,900 km2; 0.54%), are the most numerous type of geomorphic feature, principally due to the large number of individual coral reefs of the Great Barrier Reef. The geomorphology of the margin is most complex where marginal plateaus, terraces, trench/troughs and submarine canyons are present. Comparison with global seabed geomorphology indicates that the Australian margin is relatively under-represented in shelf, rise and abyssal plain/deep ocean floor area and over-represented in slope area, a pattern that reflects the mainland being bounded on three sides by passive continent-ocean rifted margins and associated numerous subsided marginal plateaus. Significantly, marginal plateaus on the Australian margin cover 20% of the total world area of marginal plateaus. The Australian margin can be divided into 10 geomorphic regions by quantifying regional differences in diagnostic features that can be used to infer broad-scale seabed habitats. The present study has application for the future management of Australia's ocean resources.

  • In March and April, 2012, Geoscience Australia undertook a seabed characterisation survey, aimed at supporting the assessment of CO2 storage potential of the Vlaming Sub-basin, Western Australia. The survey, undertaken as part of the National CO2 Infrastructure Plan program was targeted to provide an understanding of the link between the deep geological features of the area and the seabed, and connectivity between them as possible evidence for seal integrity. Data was acquired in two sections of the Rottnest Shelf lying above the regional seal - the South Perth Shale - and the underlying potentially CO2-suitable reservoir, the Gage Sandstone. Seabed samples were taken from 43 stations, and included 89 seabed grab samples. A total of 653 km2 of multibeam and backscatter data was obtained. Chirper shallow sub-bottom profile data was acquired concurrently. 6.65 km2 of side-scan sonar imagery was also obtained. The two surveyed areas, (Area 1 and Area 2), are set within a shallow sediment starved shelf setting. Area 2, situated to the southwest of Rottnest Island, is characterised by coralline red algal (rhodolith) beds, with ridges and mounds having significant rhodolith accumulations. The geomorphic expression of structural discontinuities outcropping at the seabed is evident by the presence of linear fault-like structures notable in Area 1, and north-south trending lineaments in Area 2. North-south trending structural lineaments on the outer section of Area 2 have in places, mounds standing 4-5 m above the seafloor in water depths of 80-85 m. Although there are apparent spatial correlations between seabed geomorphology and the structural geology of the basin, the precise relationship between ridges and mounds that are overlain by rhodolith accumulations, fluid seepage, and Vlaming Sub-basin geology is uncertain, and requires further work to elucidate any links.

  • This record contains the raw Ground Penetrating Radar (GPR) data and scanned field notes collected on fieldwork at Old Bar and Boomerang Beaches, NSW for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 3 - 5 March 2015 using a MALA ProEx GPR system with 250 MHz shielded and 100 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles.

  • This record contains the processed Ground Penetrating Radar (GPR) data (.segy), field notes, and shapefiles collected on fieldwork at Old Bar and Boomerang Beaches, NSW for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 3 - 5 March 2015 using a MALA ProEx GPR system with 250 MHz shielded and 100 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.

  • This record contains the processed Ground Penetrating Radar (GPR) data (.segy), field notes, and shapefile collected on fieldwork at Adelaide Metropolitan Beaches, South Australia for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 16-19 February 2015 using a MALA ProEx GPR system with 250 MHz shielded, 100 MHz unshielded and 50 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.

  • The term 'surrogacy' is used in habitat mapping with reference to the biophysical variables that can be mapped with a quantifiable correspondence to the occurrence of benthic species and communities. Surrogacy research can be defined as an empirical method of determining which easily measured characteristics best describe the species assemblage in a particular space and at a particular time. These characteristics act as predictors (with some known probability and uncertainty) for the occurrence of species assemblages in unexplored areas. Abiotic variables are, in general, more easily and less expensively obtained than biological observations, which is a key driver for surrogacy research. However, the suite of abiotic factors that exert control over the occurrence of species (its niche) is also a scientifically interesting aspect of ecology that provides important insights into a species evolution and biogeography. This chapter provides a review of surrogates used by case study authors and of the methods used to quantify relationships between variables.

  • The Antarctic continental slope spans the depths from the shelf break (usually between 500-1000 m) to ~3000 m, is very steep, overlain by 'warm' Circumpolar Deep Water and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the deep-sea fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell and Scotia sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III and BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ II cruises as well as current data bases (SOMBASE, SCAR-MarBIN), we selected four different taxa (i.e. cheilostome bryozoans, isopod and ostracod crustaceans, and echinoid echinoderms) and two areas, the Weddell and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations (and therefore support or not glaciological reconstructions of ice sheets covering continental shelves).

  • The Oceanic Shoals survey (SOL5650, GA survey 339) was conducted on the R.V. Solander in collaboration with Geoscience Australia, the Australian Institute of Marine Science (AIMS), University of Western Australia and the Museum and Art Gallery of the Northern Territory between 12 September - 5 October, 2012. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Oceanic Shoals Commonwealth Marine Reserve (CMR) using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Six geomorphic units; bank, depression, mound, plain, scarp and terrace were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes. For further information on the geomorphic mapping methods please refer to Appendix N of the post-survey report, published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • In a recent paper, Dye (2006) analyzed the distribution of species of macrobenthos and meiobenthos within two geomorphic facies of four small intermittently closed and open estuaries in New South Wales, Australia (colloquially known as ICOLLs). We believe that Dye's (2006) study is not an appropriate test of the Roy et al. (2001) habitat classification, and consequently several of the hypotheses posed by Dye do not follow logically from their model.