EFTF – Exploring For The Future
Type of resources
Keywords
Publication year
Topics
-
<div>Historically, isotopic data are collected at the individual sample level on local- to regional-scale features and are dispersed among decades of both published and unpublished individual academic literature, university theses and geological survey reports, in disparate formats and with widely varying levels of detail. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Geoscience Australia’s (GA) continental-scale Isotopic Atlas of Australia (Fraser et al., 2020), breaks this cycle of single-use science by compiling and integrating <strong>multiple radiometric age and isotopic tracer datasets</strong> and making them publicly accessible and useable through GA’s Exploring for the Future (EFTF) Portal.</div><div><br></div><div>The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal. </div>
-
<div>Although heavy mineral exploration techniques have been successfully used as exploration vectors to ore deposits around the world, exploration case studies and pre-competitive datasets relevant to Australian conditions are relatively limited. The Heavy Mineral Map of Australia (HMMA) project is a novel analytical campaign to determine the abundance and distribution of heavy minerals (SG>2.9 g/cc) in 1315 floodplain sediment samples collected from catchments across Australia during Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project. Archived NGSA samples, which originated from, on average, 60 to 80 cm depth in floodplain landforms, were sub-sampled and subjected to dense media separation and automated SEM-EDS analysis in the John de Laeter Centre at Curtin University. Mineral assay data from all 1315 drainage samples will be publicly released by the end of 2023. </div><div><br></div><div>An initial data package released in August 2022 contains mineralogical assay data for 223 samples from the Darling–Curnamona–Delamerian (DCD) region of south-eastern Australia. That package identified over 140 heavy minerals from 29 million individual mineral observations. The number of mineral observations generated during the project required development of a novel Mineral Network Analysis (MNA) tool to allow end users to discover, visualise and interpret mineral co-occurrence relationships, potentially useful in exploration vectoring and targeting. The MNA tool can also be used to rapidly search the heavy mineral database to locate observations of potential economic significance. The co-occurrence of Zn-minerals indicative of high-grade metamorphism of base metal mineralisation (e.g., gahnite (Zn-spinel), ecandrewsite (Zn-ilmenite) and zincostaurolite (Zn-aluminosilicate)) from the region surrounding Broken Hill demonstrated the utility of the method. Zn-mineral co-occurrences not associated with known mineralisation were also noted and may represent targeting opportunities. </div><div><br></div><div>Heavy mineral data from parts of Queensland are scheduled for a separate public release in December 2022 and will be presented at the conference. </div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
-
<div>Geochemical and mineralogical analysis of surficial materials (streams, soils, catchment samples, etc) can provide valuable information about the potential for mineral systems, and the background mineralogical and geochemical variation for a region. However, collecting new samples can be time consuming and expensive, particularly for regional-scale studies. Fortunately, Geoscience Australia has a large holding of archived samples from regional- to continental-scale geochemical studies conducted over the last 50 years, the majority collected at high sampling densities that would be cost-prohibitive today. Although all these samples have already been analysed, their vintage can mean that analyses were obtained by a variety of analytical methods, are of variable quality, and often only available for a small number of elements. As part of the Australian government’s Exploring for the Future program, funding was dedicated to re-analyse ~9,000 samples from these legacy surveys. They were re-analysed for 63 elements (total content) at a single laboratory producing a seamless, internally consistent, high-quality dataset, providing valuable new insights.</div><div><br></div><div>A large number (7,700) of these legacy samples were collected from north Queensland, predominantly in the Cape York – Georgetown area (5,472) — an area with both a wide-range of existing deposit types and known potential for many critical minerals. The sample densities of these studies, up to 1 sample per ~2.5 km2 for Georgetown, makes them directly applicable for determining local- and regional-scale areas of interest for mineral potential. Early interpretation of the Cape York – Georgetown data has identified several locations with stream sediments enriched in both heavy and light rare earth elements (maximum 4000 and 31,800 ppm, respectively), demonstrating the potential of this dataset, particularly for critical minerals. The greater sampling density means that these samples can also provide much more granular geochemical background information and contribute to our understanding of the lower density data commonly used in regional- and national-scale geochemical background studies.</div><div><br></div><div>In addition to the geochemical re-analysis of legacy surface samples, Geoscience Australia has also been undertaking mineral analysis of legacy continental-scale geochemical samples. The National Geochemical Survey of Australia (NGSA) sample archive has been utilised to provide a valuable new dataset. By separating and identifying heavy minerals (i.e., those with a specific gravity >2.9 g/cm3) new information about the mineral potential and provenance of samples can be gained. The Heavy Mineral Map of Australia (HMMA) project, undertaken in collaboration with Curtin University, has analysed the NGSA sample archive, with~81% coverage of the continent. The project has identified over 145 million individual mineral grains belonging to 163 unique mineral species. Preliminary analysis of the data has indicated that zinc minerals and native elements may be useful for mineral prospectivity. Due to the large amount of data generated as part of this HMMA project, a mineral network analysis tool has been developed to help visualise the relationship between minerals and aid in the interpretation of the data. Abstract presented to the Australian Institute of Geoscientists – ALS Friday Seminar Series: Geophysical and Geochemical Signatures of Queensland Mineral Deposits October 2023 (https://www.aig.org.au/events/aig-als-friday-seminar-series-geophysical-and-geochemical-signatures-of-qld-mineral-deposits/)
-
<div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>
-
NDI Carrara 1 is the first stratigraphic test of the Carrara Sub-basin, a newly discovered depocentre in the South Nicholson region that was identified on newly acquired seismic surveys undertaken as part of the Exploring for the Future program. NDI Carrara 1 intersected a thick sequence of Proterozoic aged siliciclastic and carbonate rocks, which host several intervals of interest to hydrocarbon explorers due to affinities with the known Proterozoic shale gas plays of the Beetaloo Sub-basin and the Lawn Hill Platform. These include two organic-rich black shale sequences and a thick sequence of interbedded black shales and silty-sandstones where numerous hydrocarbon shows are demonstrated. An extensive suite of wireline logs was acquired from total depth to the near surface, and continuous core was recovered through the Proterozoic interval. Geoscience Australia and partners are undertaking an extensive program of analytical work to understand the depositional, structural, and diagenetic history of the sediments intersected by NDI Carrara 1, alongside their resource potential. This study characterises petrophysical and geomechanical properties of the Proterozoic interval of NDI Carrara 1 through interpretation of wireline logging data and integration of some of this interpretation with results of geochemical analyses. High interpreted TOC content and a high calculated net shale ratio, alongside high estimated hydrocarbon saturations suggest a high potential for unconventional gas resources in the Proterozoic shale intervals of the Carrara Sub-basin; an assessment supported by gas peaks, particularly methane, measured in mud-logging gas profiles during drilling. Shale brittleness indices and interpreted present-day stresses highlight areas that are likely to be favourable for unconventional gas techniques and which may form attractive shale gas plays. Interpretation of the L210 and L212 seismic surveys suggests that the intersected sequences are laterally extensive and continuous throughout the Carrara Sub-basin, potentially forming a significant new hydrocarbon province and continuing the Proterozoic shale play fairway across the Northern Territory and northwest Queensland. This Abstract was submitted/presented to the 2022 Central Australian Basins Symposium IV (CABS) 29-30 August (https://agentur.eventsair.com/cabsiv/)
-
An Isotopic Atlas of Australia (Fraser et al., 2020) provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. This poster provides example maps produced from compiled data of multiple geochronology and isotopic tracer datasets from this Isotopic Atlas, now publicly available and downloadable via Geoscience Australia’s (GA) Exploring for the Future (EFTF) <a href="https://portal.ga.gov.au/persona/geochronology">Geochronology and Isotopes Data Portal</a> and Mineral Resources Tasmania’s <a href="https://www.mrt.tas.gov.au/mrt_maps/app/list/map">Listmap</a>. These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia. Compiled geochronology, which commenced with coverage of northern Australia (Jones et al., 2018), is now much more comprehensive across Victoria (Waltenberg et al., 2021) and Tasmania (Jones et al., in press), with New South Wales and South Australia updates well underway. Available data include: Sm–Nd model ages of magmatic rocks; Lu–Hf isotopes from zircon and associated O-isotope data; Pb–Pb isotopes from ore-related minerals such as galena and pyrite; Rb–Sr isotopes from soils; U–Pb ages of magmatic, metamorphic and sedimentary rocks; and K–Ar, Ar–Ar, Re–Os, Rb–Sr and fission-track ages from minerals and whole rocks. <b>To view the associated poster see <a href="https://dx.doi.org/10.26186/147420">eCat 147420</a>. This Abstract & Poster were presented to the 2022 Specialist Group in Tectonics & Structural Geology(SGTSG) Conference 22-24 November (https://www.sgtsg.org/). </b> <i>Fraser, G.L., Waltenberg, K., Jones, S.L., Champion, D.C., Huston, D.L., Lewis, C.J., Bodorkos, S., Forster, M., Vasegh, D., Ware, B., Tessalina, S. 2020. An Isotopic Atlas of Australia. Geoscience Australia, Canberra. https://doi.org/10.11636/133772. Geoscience Australia. 2021. Geoscience Australia Exploring for the Future portal, viewed 13 September 2022. https://portal.ga.gov.au/persona/geochronology. Jones, S.L., Anderson, J.R., Fraser, G.L., Lewis, C.J., McLennan, S.M. 2018. A U-Pb Geochronology Compilation for Northern Australia: Version 2, 2018. Geoscience Australia Record 2018/49. https://doi.org/10.11636/Record.2018.049. Jones, S.L., Waltenberg, K., Ramesh, R., Cumming, G., Everard, J.L., Vicary, M.J., Bottrill, R.S., Knight, K., McNeill, A.W., Bodorkos, S., Meffre, S. in press. Isotopic Atlas of Australia: Geochronology compilation for Tasmania Version 1.0. Geoscience Australia Record. Mineral Resources Tasmania. 2022. Mineral Resources Tasmania Listmap, viewed 19 September 2022. https://www.mrt.tas.gov.au/mrt_maps/app/list/map. Waltenberg, K., Jones, S.L., Duncan, R.J., Waugh, S., Lane, J. 2021. Isotopic Atlas of Australia: Geochronology compilation for Victoria Version 1.0. Geoscience Australia Record 2021/24. https://doi.org/10.11636/Record.2021.024. </i>
-
<div>Geoscience Australia’s Onshore Basin Inventories project provides a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage of hydrocarbon-prone onshore Australian sedimentary basins. Two existing volumes cover many central and north Australian onshore basins, providing a single point of reference and creating a standardised national basin inventory. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory reports identify critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. </div><div><br></div><div>Under Geoscience Australia’s Exploring for the Future (EFTF) program, several new onshore basin inventory reports are being delivered. The next releases include the Adavale Basin of southern Queensland and a compilation of Australia’s Mesoproterozoic basins. These reports are supported by value-add products that address identified data gaps and evolve regional understanding of basin evolution and prospectivity, including petroleum systems modelling, seismic reprocessing and regional geochemical studies. The Onshore Basin Inventories project continues to provide scientific and strategic direction for pre-competitive data acquisition under the EFTF work program, guiding program planning and shaping post-acquisition analysis programs.<br> <b>Citation: </b>Bailey Adam H. E., Carr Lidena K., Korsch Russell (2023) Australia’s Onshore Basin Inventories – foundational knowledge synthesis for better design of precompetitive data acquisition. <i>The APPEA Journal </i><b>63</b>, S209-S214. https://doi.org/10.1071/AJ22045
-
<div>NDI Carrara 1 is a deep stratigraphic borehole that was drilled in 2020 under the MinEx CRC’s National Drilling Initiative (NDI) program in collaboration with Geoscience Australia and the Northern Territory Geological Survey. NDI Carrara 1 is the first stratigraphic test of the recently described Carrara Sub-basin, a Proterozoic aged depocentre located in the South Nicholson region of northwest Queensland and the Northern Territory. The borehole was drilled to a total depth of 1751 m and penetrated a succession of Cambrian aged Georgina Basin carbonate and siliciclastic rocks that unconformably overly a thick succession of Proterozoic age siliciclastic and carbonate-rich sediments. Although drilled on the western flank of the Carrara Sub-basin, NDI Carrara 1 did not penetrate to basement. Interpretation of the L210 deep-crustal seismic survey suggests that further Proterozoic sedimentary packages known from the northern Lawn Hill Platform in northwest Queensland are likely to be found underlying the succession intersected in NDI Carrara 1. The borehole was continuously cored from 283 m to total depth, and an extensive suite of wireline logs was acquired. Geoscience Australia and partners have undertaken an extensive analytical program to understand the depositional, structural, and diagenetic history of the sediments intersected in NDI Carrara 1. This program includes a targeted geomechanical study that aims to characterise the physical properties of these Proterozoic rocks through laboratory analysis of core samples, the results of which are summarised in this data release.</div><div><br></div><div>This data release provides data from new unconfined compressive strength (UCS), single-stage triaxial testing, and laboratory ultrasonic testing for 36 sample plugs from NDI Carrara 1. These tests were performed at the CSIRO Geomechanics and Geophysics Laboratory in Perth, during January to June 2022. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document. </div>
-
<div>Templates and User Guide to provide airborne geophysical data to non-technical people. The template includes a description of the project, survey method, how the data can be used, and what the data can show you. The template is internal use only</div><div>1. Airborne Electromagnetic Survey</div>
-
<div>An Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. This poster provides example maps produced from compiled data of multiple geochronology and isotopic tracer datasets from this Isotopic Atlas. It is also a promotion for the release of the Victorian and Tasmanian age compilation datasets (Waltenbeg et al., 2021; Jones et al., 2022).</div>