From 1 - 10 / 72
  • This Record documents the efforts of Mineral Resources Tasmania (MRT) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Tasmania, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This Tasmanian compilation represents the second in a series of compilation publications (Records and Datasets) for the southern states of Australia, which are a foundation for the second phase of the Exploring for the Future initiative over 2020–2024. It was compiled primarily from data, reports, journal articles and theses provided to GA by MRT. The most current data can be accessed and downloaded from GA’s <a href=https://portal.ga.gov.au/persona/geochronology>EFTF Geochronology and Isotopes Data Portal</a> and MRT’s <a href=https://www.mrt.tas.gov.au/mrt_maps/app/list/map>LISTmap.</a>

  • <div>Maps showing the potential for carbonatite-related rare earth element (REE) mineral systems in Australia. Each of the mineral potential maps is a synthesis of three or four component layers. Model 1 integrates three components: sources of metals, energy drivers, and lithospheric architecture. Model 2 integrates four components: sources of metals, energy drivers, lithospheric architecture, and ore deposition. Both models use a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential map for Model 2 that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. An assessment criteria table is provided and contains information on the map creation.</div>

  • <div>As part of the first phase (2016-2020) of the Exploring for the Future (EFTF) program, Geoscience Australia deployed 119 broad band seismic stations in northern Australia. This deployment was part of the Australian Passive Seismic Array (AusArray) Project. Data from these stations were used to image the seismic structure using various techniques, including ambient noise tomography (ANT). The first ANT model (Hejrani et al, 2020) was focused on a narrow range of frequencies and used the Hawkins and Sambridge (2019) approach to estimate dispersion curves. This new approach starts from the original work by Aki (1957) to estimate phase velocity in the frequency domain, and then takes a step further to ensure a smooth curve is achieved. In Hejrani et al., (2022), using minimum Signal-to-Noise-Ratio (SNR) threshold of 2, about 4,000 data points (out of 7,000+) were used to generate surface wave velocity maps at a resolution of 1 degree at four frequencies (sensitive to different depths). This model was subsequently updated in September 2021 by using all 7,000+ data points (no SNR threshold) of phase velocity measurements across AusArray year one to provide a 0.25 degree resolution model. All dispersion curves regardless of their quality were utilized. A number of artefacts were identified in that model, which motivated further investigations. During 2022, I developed a new automated and scalable approach to estimate dispersion curves, which was completed in December 2022. This new method starts from the original idea by Aki (1957), but takes a different approach to stabilize the dispersion curves and to avoid cycle skipping. </div><div>This record represents the preferred 2D velocity models for AusArray year one data based on the newly estimated dispersion curves and a comparison with previous models and interpretations; is an update from Hejrani et al. (2020) and should be read in conjunction. Work is currently under way to invert these 2D surface wave models to obtain 3D velocity models for the crust and mantle. Such 3D velocity models would be suitable for joint interpretations with other data such active seismic, gravity and magnetic. The code will be made publicly available at the conclusion of EFTF.</div>

  • <div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20&nbsp;km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500&nbsp;m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area &gt;2,000,000&nbsp;km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>Australian sediment-hosted mineral systems are important sources of base metals and critical minerals that are vital to delivering Australia’s low-carbon economy. In Australia, sediment-hosted resources account for ~82% and ~86% of the total zinc (Zn) and lead (Pb) resources respectively. Given their significance to the Australian economy, four national-scale mineral potential models for sediment-hosted Zn-Pb mineral systems have been developed: clastic-dominated siliciclastic carbonate, clastic-dominated siliciclastic mafic, Mississippi Valley-type and Irish-type. In addition to the potential for Zn-Pb mineralisation, the uncertainty related to data availability has been examined. The mineral potential models were created using a mineral systems-based approach where mappable criteria have been used to assess the prospectivity of each system. Each model has been derived from a large volume of precompetitive geoscience data. The clastic-dominated siliciclastic carbonate mineral potential model predicts 92% of known deposits and occurrences within 15.5% of the area, the clastic-dominated siliciclastic mafic mineral potential model predicts 85% of deposits and occurrences within 27% of the area, and the Mississippi Valley-type mineral potential model predicts 66% of known deposits and occurrences within 31% of the area. Each model successfully predict the location of major sediment-hosted Zn-Pb deposits while highlighting new areas of elevated prospectivity in under-explored regions of Australia, reducing the exploration search space by up to 85% for sediment-hosted Zn-Pb mineral systems.</div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically thought to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earths mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and/ or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.&nbsp;</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere. They are also directly related to metallogenesis and mineralisation, particularly for a number of the critical minerals, e.g., rare earth elements, niobium. In light of this, Geoscience Australia is undertaking a compilation of the distribution and geology of Australian alkaline and related rocks, of all ages, and producing a GIS and associated database of such rocks, to both document such rocks and for use in metallogenic and mineral potential studies.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Cenozoic age. The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g. extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.</div><div><br></div><div>Cenozoic alkaline and related rocks occur primarily within a belt running from Northeastern Queensland, through eastern New South Wales into Victoria and through to South Australia and Tasmania with a single occurrence in Western Australia. Compositions range from peralkaline trachytic and rhyolitic rocks to lamprophyric rocks to alkali basalts and more undersaturated feldspathoid-bearing lithologies. Ages span the entire Cenozoic but locally and regionally are more restrictive. Bodies are generally of small volume (extrusive rocks) or of small size (intrusive rocks). On the basis of location (and lithology, age and/or alkaline classification), 332 individual geologic units have been grouped into 59 informal alkaline provinces. The latter provides a simplified broad-scale overview of the distribution of the Cenozoic alkaline and related rocks of Australia but also allows for better search capabilities at broad scales in the GIS environment (overcoming the small size of many alkaline bodies).</div>

  • <div>Steelmaking value chains are economically important to Australia, but the need to decarbonize traditional steel-making processes could disrupt existing supply lines. Hydrogen-based iron and steel production offers one pathway for reducing the carbon intensity of steel. The opportunities and challenges presented by this technology, for Australia, are obscured as its cost competitiveness depends on the interaction between multiple industrial processes, including feedstock requirements, storage options, and the availability of infrastructure. To address these problems, we have developed the Green Steel Economic Fairways Mapper. This mapping tool enables user-driven assessments of the green iron or steel resource potential across Australia. The tool optimizes system capacities for renewable energy generation, battery storage, hydrogen electrolysis, and hydrogen storage to estimate the levelized costs of green steel and how these costs vary regionally. Here, we present examples of analysis and integration with other geospatial datasets. Our model compares favourably to previously published cost estimates while also providing granular, spatial considerations of resource potential. Examples demonstrate that the tool that can be used to inform decision-making in the development of actions to de-risk green steel development within Australia.</div>

  • <div>Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>One main component of the EFTF program is the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), which is a collaborative national survey by federal government, state and territory governments, and research organizations since late 2013. The project acquires long-period magnetotelluric data on a half-degree grid spacing across Australia and provides first order electrical conductivity/resistivity structure of the Australian continental lithosphere. This reconnaissance dataset improves the understanding of lithospheric structures and tectonic evolution of Australian plate. It provides a framework and a bottom-up approach to identify newly resource potential regions for infill surveys and further study. The dataset also uses for assessment and prediction of geomagnetic storm’s nature hazards. </div><div><br></div><div>This data release contains a 3D resistivity model and site locations. The 3D model was derived from publicly available AusLAMP data in Australia (excluding western Australia). The model was projected to GDA94 MGA Zone 54 and was converted into SGrid/ASCII format and geo-referenced TIFF format.</div><div><br></div><div>We acknowledge the traditional custodians of the country where the data were collected. We also acknowledge the support provided by individuals and communities for land access and data acquisition, without whose cooperation these data could not have been collected. The 3D model was produced on the National Computational Infrastructure, which is supported by the Australian government.</div><div><br></div>

  • <div>Around the world the Earth's crust is blanketed to various extents by sedimentary cover. For continental regions, knowledge of the distribution and thickness of sediments is crucial for a wide range of applications including seismic hazard, resource potential, and our ability to constrain the deeper crustal geology. Excellent constraints on the sedimentary thickness can be obtained from borehole drilling or active seismic surveys. However, these approaches are expensive and impractical in remote continental interiors such as central Australia. </div><div><br></div><div>Recently, a method for estimating the sedimentary thickness using passive seismic data, the collection of which is relatively simple and low-cost, was developed and applied to seismic stations in South Australia. This method uses receiver functions, specifically the time delay of the \P{}-to-\S{} converted phase generated at the sediment-basement interface, relative to the direct-P arrival, to generate a first order estimate of the thickness of sedimentary cover. In this work we expand the analysis to the vast array of over 1500 seismic stations across Australia, covering an entire continent and numerous sedimentary basins that span the entire range from Precambrian to present-day. We compare with an established yet separate method to estimate the sedimentary thickness, which utilises the autocorrelation of the radial receiver functions to ascertain the two-way travel-time of shear waves reverberating in a sedimentary layer.</div><div><br></div><div>Across the Australian continent the new results clearly match the broad pattern of expected sedimentation based on the various geological provinces. Furthermore we are able to delineate the boundaries of many sedimentary features, such as the Eucla and Murray Basins, which are Cenozoic, and the boundary between the Karumba Basin and the mineral rich Mount Isa Province. The signal is found to diminish for older Proterozoic basins, likely due to compaction and metamorphism of the sediments over time. Finally, a comparison with measurements of sedimentary thickness from local boreholes allows for a straightforward predictive relationship between the delay time and the cover thickness to be defined. This offers future widespread potential, providing a simple and cheap way to characterise the sedimentary thickness in under-explored areas from passive seismic data. </div><div><br></div><div>This study and some of the data used are funded and supported by the Australian Government's Exploring for the Future program led by Geoscience Australia.</div> <b>Citation:</b> Augustin Marignier, Caroline M Eakin, Babak Hejrani, Shubham Agrawal, Rakib Hassan, Sediment thickness across Australia from passive seismic methods, <i>Geophysical Journal International</i>, Volume 237, Issue 2, May 2024, Pages 849–861, <a href="https://doi.org/10.1093/gji/ggae070">https://doi.org/10.1093/gji/ggae070</a>

  • <div>This record one in a series of reports detailing the geochemical and mineralogical results of sampling collected at mine waste sites across Australia as part of Geoscience Australia's Exploring for the Future program. It presents new data and information regarding the tenor rare earth elements, ore commodities (lead, zinc and silver) and other trace metals, at the Cannington silver and lead mine located in Queensland’s Northwest Minerals Province.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>